lim/x→3.14/2^+ ln(x-3.14/2)/tanx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 16:59:43
x)կx6XD(N[!'OB/I̫I*'F~
)7ikFՀ(ц0Xd#ZGg_ΜtהSV<;)/{yӎ`+Q
N/0\A@߀4t3*fV`L(aTq7@z6yv s`֯@O7{d44Xt8G[Ol[~
O?ojjGjkь3{E=B9afChl]@_<UzzXCi늗+ntOAl~6eۋۑd ;
lim/x→3.14/2^+ ln(x-3.14/2)/tanx
lim/x→3.14/2^+ ln(x-3.14/2)/tanx
lim/x→3.14/2^+ ln(x-3.14/2)/tanx
lim(x->π/2+)[ln(x-π/2)/tanx]=lim(x->π/2+){[1/(x-π/2)]/sec²x} (∞/∞型极限,应用罗比达法则)
=lim(x->π/2+)[cos²x/(x-π/2)] (0/0型极限,应用罗比达法则)
=lim(x->π/2+)(-2sinx*cosx)
=lim(x->π/2+)[-sin(2x)]
=-sinπ
=0.
lim/x→π/2+/[ln(x-π/2)/tanx]属于lim(∞/∞)模型
∴由洛必达法则,得 原式=lim/x→π/2+/ {[1/(x-π/2)]/[1+(tanx)^2]}
=lim/x→π/2+/ {1/(x-π/2)[1+(tanx)^2]}
=lim/x→π/2+/ [1/(x-π/2)]
=+∞它等于0呀原式=lim/x→π/2+/ [1/(x-...
全部展开
lim/x→π/2+/[ln(x-π/2)/tanx]属于lim(∞/∞)模型
∴由洛必达法则,得 原式=lim/x→π/2+/ {[1/(x-π/2)]/[1+(tanx)^2]}
=lim/x→π/2+/ {1/(x-π/2)[1+(tanx)^2]}
=lim/x→π/2+/ [1/(x-π/2)]
=+∞
收起