求函数f(x)=2cos²x+3sinx在[-π/2,π/2]上的最值 要有具体过程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 10:38:40
求函数f(x)=2cos²x+3sinx在[-π/2,π/2]上的最值 要有具体过程
求函数f(x)=2cos²x+3sinx在[-π/2,π/2]上的最值 要有具体过程
求函数f(x)=2cos²x+3sinx在[-π/2,π/2]上的最值 要有具体过程
楼上求单调区间太麻烦了,我的方法会更好.
f(x)=2cos²x+3sinx
=2(1-sin²x)+3sinx
=-2sin²x+3sinx+2(对称轴x=3/4)
在x∈[-π/2,π/2]时,sinx∈[-1,1]
所以,f(x)最大值25/8,最小值-3
不懂发信~
思路:把cos²x转化为sinx的平方 即把原式化为关于sinx的二次函数 二次函数的单调区间很好找
自己动笔试试 相信自己
对称轴分开的形成的区间就是单调区间 就是一回事
个人觉得 应该通过这道题 掌握这一类题解法的基本思路或本质 shaqipi回答的很详细哦...
全部展开
思路:把cos²x转化为sinx的平方 即把原式化为关于sinx的二次函数 二次函数的单调区间很好找
自己动笔试试 相信自己
对称轴分开的形成的区间就是单调区间 就是一回事
个人觉得 应该通过这道题 掌握这一类题解法的基本思路或本质 shaqipi回答的很详细哦
收起
f(x)=2cos²x+3sinx=2(1-sin²x)+3sinx=-2sin²x+3sinx=2
换元法 令t=sinx ∵x在[-π/2,π/2] ∴sinx在[-1,1]
原函数变为g(t)=-2t²+3t+2=-2(t-3/4)²+25/8
∴t=3/4时取到最大值 最...
全部展开
f(x)=2cos²x+3sinx=2(1-sin²x)+3sinx=-2sin²x+3sinx=2
换元法 令t=sinx ∵x在[-π/2,π/2] ∴sinx在[-1,1]
原函数变为g(t)=-2t²+3t+2=-2(t-3/4)²+25/8
∴t=3/4时取到最大值 最大值f(x)=g(t)=25/8
t在[-1,3/4]区间内单调递增 在[3/4,1]区间内单调递减
不难得出最小值即t=-1时,最小值f(x)=-3
收起
f(x)=2cos²x+3sinx=2-2sin²x+3sinx=-2(sinx-3/4)^2+25/8
x∈[-π/2,π/2]时,sinx∈[-1,1]
所以当sinx=3/4时,f(x)最大值=25/8;
当sinx=-1时,f(x)最小值=2-2-3=-3