lim(x→0+)[ln(sin5x)]/[ln(sin3x)] 这题咋做

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 03:06:43
lim(x→0+)[ln(sin5x)]/[ln(sin3x)] 这题咋做
xN@_7ҥV8{ DRKc=DZCJB#HhB ߄t+8X"x;]Y*1;]EU29b&WY-_k$2QP/ABJ1U,yA¶v6V8+>â{gۑ2#V:7&͡;v:Xݲ׺H;ϼw=f؀$Q"Dj6tZdJJ@{Vfy%XPT)<j$E_A?40dsfuUzΛSVxT3a.n$r׾Z(MO|| s

lim(x→0+)[ln(sin5x)]/[ln(sin3x)] 这题咋做
lim(x→0+)[ln(sin5x)]/[ln(sin3x)] 这题咋做

lim(x→0+)[ln(sin5x)]/[ln(sin3x)] 这题咋做
lim(x→0+)[ln(sin5x)]/[ln(sin3x)]
=lim(x→0+)[5cos5x/sin5x]/[3cos3x/sin3x]
=lim(x→0+)[5cos5x×sin3x]/[3cos3x×sin5x]
=1(L'Hospital法则)
补充:lim(x→0+)cos5x=1,lim(x→0+)cos3x=1,因为这是连续函数求极限,直接代入.
lim(x→0+)[sin3x/sin5x]
=3/5

sin5x~5x sin3x~3x
因此原式=lim(x→0+)ln(5x)/ln(3x)=lim(ln5+lnx)/(ln3+lnx)
=lim(ln5/lnx+1)/ln3/1nx+1)
因为x→0+ 故lnx→-∞
那么ln5/lnx,ln3/lnx都趋近于0

原式=1

lim(x→0+)[ln(sin5x)]/[ln(sin3x)]
=lim(x→0+)[5cos5x/sin5x]/[3cos3x/sin3x]
=lim(x→0+)[5cos5x/3cos3x]*[sin3x/sin5x]
=lim(x→0+)[5cos5x/3cos3x]*(x→0+)[sin3x/sin5x]
=5/3*3/5
=1