已知函数f(x)=1-2sin^2(x+π/8)+2sin(x+π/8)*cos(x+π/8)求函数最小值与单调增区间tan4/π才应该=b/a=1吧,为啥是√2sin(2x+π/2)呢

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:45:32
已知函数f(x)=1-2sin^2(x+π/8)+2sin(x+π/8)*cos(x+π/8)求函数最小值与单调增区间tan4/π才应该=b/a=1吧,为啥是√2sin(2x+π/2)呢
x){}K}6uCFQqf^F} MmJ/mlh{6 {{;ņ構=r< :{bR$D[çdǮS>Q,F`4N\dTOډqX!َ/!HFق hj# 5JZe.mT.|V ܓO{7lu MW3]fˆID<}Ac4utDi$AA {: ^}%Q ! ]h3.FrB

已知函数f(x)=1-2sin^2(x+π/8)+2sin(x+π/8)*cos(x+π/8)求函数最小值与单调增区间tan4/π才应该=b/a=1吧,为啥是√2sin(2x+π/2)呢
已知函数f(x)=1-2sin^2(x+π/8)+2sin(x+π/8)*cos(x+π/8)
求函数最小值与单调增区间
tan4/π才应该=b/a=1吧,为啥是√2sin(2x+π/2)呢

已知函数f(x)=1-2sin^2(x+π/8)+2sin(x+π/8)*cos(x+π/8)求函数最小值与单调增区间tan4/π才应该=b/a=1吧,为啥是√2sin(2x+π/2)呢
f(x)=1-2sin^2(x+π/8)+2sin(x+π/8)*cos(x+π/8)
=cos(2x+π/4)+sin(2x+π/4)
=√2sin(2x+π/4+π/4)
=√2cos2x
f(x)=√2cos2x的最小值即cos2x=-1时
f(x)的最小值为 -√2
递增区间为[-π/2+kπ,kπ] (k∈Z)

f(x)=1-2sin (x+π/8)+2sin(x+π/8)cos(x+π/8) =cos(2x+π/4)+sin(2x+π/4) =√2sin(2x+π/2) =√2cos2x 因此f(x)的最小正