1乘.100等于几

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:34:11
1乘.100等于几
xUR@}>N:cY8 VThQ |#on/_ws dv{9'msJ[KN'K[?-Y]Zf݌SJ7r5ֽ8os-K/eSs̐cSẅc;cn:J{g(>p{ ih鎏pkg9*rUg֪` %R>0%;[cl*ቆW/c9dSy~7a]f-iT|^hfl^U<y-.`6m~G[WŖCëDڞK 0F`C:w'/Vq~3֊b;!Q4.x*N' .,i6VUA)d<&ӹ},K\DژB AC!C%ʇ|(4]~'Uf/`'=0 t(fZJkǴv b b!`n^ O GfnO"B^!  tbH-y=ƺWw j/Bda$,0,҈Na2@0' Mn?mO|_+~;)Akww!yy!R1@TAe7m}"Q~ƍ(^DYI./46DnLA#\,kM4 ~U+u&_kv}ؖƿw}

1乘.100等于几
1乘.100等于几

1乘.100等于几
从1到10,连续10个整数相乘:
1×2×3×4×5×6×7×8×9×10.
连乘积的末尾有几个0?
答案是两个0.其中,从因数10得到1个0,从因数2和5相乘又得到1个0,共计两个.
刚好两个0?会不会再多几个呢?
如果不相信,可以把乘积计算出来,结果得到
原式=3628800.你看,乘积的末尾刚好两个0,想多1个也没有.
那么,如果扩大规模,拉长队伍呢?譬如说,从1乘到20:
1×2×3×4×…×19×20.这时乘积的末尾共有几个0呢?
现在答案变成4个0.其中,从因数10得到1个0,从20得到1个0,从5和2相乘得到1个0,从15和4相乘又得到1个0,共计4个0.
刚好4个0?会不会再多几个?
请放心,多不了.要想在乘积末尾得到一个0,就要有一个质因数5和一个质因数2配对相乘.在乘积的质因数里,2多、5少.有一个质因数5,乘积末尾才有一个0.从1乘到20,只有5、10、15、20里面各有一个质因数5,乘积末尾只可能有4个0,再也多不出来了.
把规模再扩大一点,从1乘到30:
1×2×3×4×…×29×30.现在乘积的末尾共有几个0?
很明显,至少有6个0.
你看,从1到30,这里面的5、10、15、20、25和30都是5的倍数.从它们每个数可以得到1个0;它们共有6个数,可以得到6个0.
刚好6个0?会不会再多一些呢?
能多不能多,全看质因数5的个数.25是5的平方,含有两个质因数5,这里多出1个5来.从1乘到30,虽然30个因数中只有6个是5的倍数,但是却含有7个质因数5.所以乘积的末尾共有7个0.
乘到30的会做了,无论多大范围的也就会做了.
例如,这次乘多一些,从1乘到100:
1×2×3×4×…×99×100.现在的乘积末尾共有多少个0?
答案是24个.