【挑战】:三角函数求值!1.求 [ 1/cos^2(80°)- 3/cos^2(10°)]* 1/cos20°的值2.求 [ 2sin50°+ sin10°(1+√3 * tan10°)]* √(2sin80°)的值【会几个就做几个吧,都很具有挑战性】

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 19:35:17
【挑战】:三角函数求值!1.求 [ 1/cos^2(80°)- 3/cos^2(10°)]* 1/cos20°的值2.求 [ 2sin50°+ sin10°(1+√3 * tan10°)]* √(2sin80°)的值【会几个就做几个吧,都很具有挑战性】
xU_OP*U uK$9dN2 , B"eӑ>s-i%;?7tZ+nZ;2o5po;f%.Z*|38~FAGWHI$`C>9p[Q8?]#L3H+8wj\~ĝ.ޚ vv΅Yͳ LEDVK4Mr"t4Ҷ]/8jK,5@yO)UzҨR)gP Po1P)x3XX|jP4$;ƅC^kn蟎{F5>.s4Lz%uThqA4 k܄F:Vd9sQ3.Ҍ浌Eb=(cGq8i

【挑战】:三角函数求值!1.求 [ 1/cos^2(80°)- 3/cos^2(10°)]* 1/cos20°的值2.求 [ 2sin50°+ sin10°(1+√3 * tan10°)]* √(2sin80°)的值【会几个就做几个吧,都很具有挑战性】
【挑战】:三角函数求值!
1.求 [ 1/cos^2(80°)- 3/cos^2(10°)]* 1/cos20°的值
2.求 [ 2sin50°+ sin10°(1+√3 * tan10°)]* √(2sin80°)的值
【会几个就做几个吧,都很具有挑战性】

【挑战】:三角函数求值!1.求 [ 1/cos^2(80°)- 3/cos^2(10°)]* 1/cos20°的值2.求 [ 2sin50°+ sin10°(1+√3 * tan10°)]* √(2sin80°)的值【会几个就做几个吧,都很具有挑战性】
老课本例题.
第2题.[ 2sin50°+ sin10°(1+√3 * tan10°)]
=[2sin50+sin10(1+√3*sin10/cos10]
=[2sin50+sin10(cos10+√3sin10)/cos10]
=[2sin50+sin10(2sin40)/cos10]
=2[(cos10sin50+sin10sin40)/cos10]
=2[(cos10cos40+sin10sin40)/cos10]
=2[cos(40-10)]/cos10
=√3/cos10
后面这项* √(2sin80°)你看看有没有打错 sin80=cos10

第一题32,第二题计算器算了2.468311097……采纳啊

[1/(cos80°)^2-3/(cos10°)^2] *[1/cos20]
=[(1/cos80 + √3/cos10) * (1/cos80 - √3/cos10)] *[1/cos20]
=[(1/sin10 + √3/cos10) * (1/sin10 - √3/cos10)] *[1/cos20]
=[(cos10+√3sin10)/sin10cos10 * (c...

全部展开

[1/(cos80°)^2-3/(cos10°)^2] *[1/cos20]
=[(1/cos80 + √3/cos10) * (1/cos80 - √3/cos10)] *[1/cos20]
=[(1/sin10 + √3/cos10) * (1/sin10 - √3/cos10)] *[1/cos20]
=[(cos10+√3sin10)/sin10cos10 * (cos10-√3sin10)/sin10cos10]*[1/cos20]
=[4sin40/sin20 * 4cos70/sin20] *[1/cos20]
=[16sin40/sin20] *[1/cos20]
=[32cos20] *[1/cos20]
=32
http://z.baidu.com/question/93744357.html?si=1

收起

32

1:原式=[1/sin^2(10°)- 3/cos^2(10°)]*1/cos20°=[(cos^2(10°)-3sin^2(10°))/sin^2(10°)cos^2(10°)]*1/cos20°=[(cos(10°)+√3sin(10°))*((cos(10°)-√3sin(10°))/sin^2(10°)cos^2(10°)]*1/cos20°=[2sin40°*2sin20°/(1/4sin^2(20°))] *1/cos20°=32
2是否有误呢?