2次函数有什么特点 证明怎么办

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 05:27:39
2次函数有什么特点 证明怎么办
xUN`&KMjA>mM,KI5: e| EAn`].B{[y2\x|^UHUNW+vJWuiX%gJXzx: ?4`KvݽMwMnԇށ@Aub\!Qe!^$jln Ayr /R$hvx?Kgh(9gd"h,\M턥kO"yn9qaFzhӁ9f \|wKފpmCP1bu=&bP+8V!zh7ր*x,ġQ׃: c?1,VBL84A)L o^9D)mm҂~2vWND%r%RܠPÉ #G]Nc*{Bhw#Y^O!;D|KeLr70 ]C=t\'7xeZe@s|XE7C$

2次函数有什么特点 证明怎么办
2次函数有什么特点 证明怎么办

2次函数有什么特点 证明怎么办
1.抛物线是轴对称图形.对称轴为直线x = -b/2a.  对称轴与抛物线唯一的交点为抛物线的顶点P.  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)   2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b²)/4a )   当-b/2a=0时,P在y轴上;当Δ= b²-4ac=0时,P在x轴上.  3.二次项系数a决定抛物线的开口方向和大小.  当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.  |a|越大,则抛物线的开口越小.  4.一次项系数b和二次项系数a共同决定对称轴的位置.  当a与b同号时(即ab>0),对称轴在y轴左侧; 因为若对称轴在左边则对称轴小于0,也就是-b/2a0,所以b/2a要小于0,所以a、b要异号   事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值.可通过对二次函数求导得到.  5.常数项c决定抛物线与y轴交点.  抛物线与y轴交于(0,c)   6.抛物线与x轴交点个数   Δ= b²-4ac>0时,抛物线与x轴有2个交点.  Δ= b²-4ac=0时,抛物线与x轴有1个交点.  Δ= b²-4ac<0时,抛物线与x轴没有交点.X的取值是虚数(x= -b±√b²-4ac 的值的相反数,乘上虚数i,整个式子除以2a)   当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b²/4a}相反不变 ,a