已知关于x的一元二次方程x²-6x-k²=0(k为常数),给出以下结论:①方程有两个不相等的实数根;②方程的两个跟异号;③若k=0,方程必有一根为0;④方程必有一个不小于6的根.其中正确的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:18:43
已知关于x的一元二次方程x²-6x-k²=0(k为常数),给出以下结论:①方程有两个不相等的实数根;②方程的两个跟异号;③若k=0,方程必有一根为0;④方程必有一个不小于6的根.其中正确的
已知关于x的一元二次方程x²-6x-k²=0(k为常数),给出以下结论:①方程有两个不相等的实数根;②方程的两个跟异号;③若k=0,方程必有一根为0;④方程必有一个不小于6的根.其中正确的是
A、①② B、①③ C、①②④ D、①③④
已知关于x的一元二次方程x²-6x-k²=0(k为常数),给出以下结论:①方程有两个不相等的实数根;②方程的两个跟异号;③若k=0,方程必有一根为0;④方程必有一个不小于6的根.其中正确的
①方程有两个不相等的实数根
△=36+4k^2>=36>0
所以成立
②方程的两个根异号
x1x2=-k^2=9
所以3+√(k^2+9)>=6
所以成立
因此答案选D
①方程有两个不相等的实数根
△=36+4k^2>=36>0
所以成立
②方程的两个根异号
x1x2=-k^2<=0
因此,当k=0时,存在x1=0 x2=6的情况
所以不成立
③若k=0,方程必有一根为0
根据上面的论述,结论成立
④方程必有一个不小于6的根
(x-3)^2=k^2+9
x=3±√(k^2+9...
全部展开
①方程有两个不相等的实数根
△=36+4k^2>=36>0
所以成立
②方程的两个根异号
x1x2=-k^2<=0
因此,当k=0时,存在x1=0 x2=6的情况
所以不成立
③若k=0,方程必有一根为0
根据上面的论述,结论成立
④方程必有一个不小于6的根
(x-3)^2=k^2+9
x=3±√(k^2+9)
因为k^2+9>=9
所以3+√(k^2+9)>=6
所以成立
因此答案选D
收起
D