化简[2x/(x2-4)-1/(x-2)]·(x+2)/(x-1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 14:29:00
化简[2x/(x2-4)-1/(x-2)]·(x+2)/(x-1)
x){3h } #]M]C CH3v m#MP&HXv6$K"[* X\B ]jLEY`_$A=c4ΧmON>l';g<ٽ@y˶r6o0ڂ)@`!z 5|ɮ>PFL,YƢ+BʢixB,/.zٴ6 z>eO?';;6DATqk V!

化简[2x/(x2-4)-1/(x-2)]·(x+2)/(x-1)
化简[2x/(x2-4)-1/(x-2)]·(x+2)/(x-1)

化简[2x/(x2-4)-1/(x-2)]·(x+2)/(x-1)
[2x/(x2-4)-1/(x-2)]·(x+2)/(x-1)
=[2x/(x+2)(x-2)-1/(x-2)]*(x+2)/(x-1)
=(2x-x-2)/(x+2)(x-2)*(x+2)/(x-1)
=1/(x+2)*(x+2)/(x-1)
=1/(x-1)

1/(x-2)分子分母同时乘以(x+2)然后得[2x/x2-4-1/(x-2)}=(x-2)/x2-4=1/(x+2)
然后乘以x+2再除以x-1等于1/(x-1)

[2x/(x2-4)-1/(x-2)]·(x+2)/(x-1)
={2x/[(x+2)(x-2)]-1/(x-2)}·(x+2)/(x-1)
={[2x-(x+2)]/[(x+2)(x-2)]}·(x+2)/(x-1)
={(x-2)/[(x+2)(x-2)]}·(x+2)/(x-1)
=[1/(x+2)]·(x+2)/(x-1)
=1/(x-1)

后面那框框的符号是什么?
[2x/(x2-4)-1/(x-2)]·(x+2)/(x-1)
=[x/(x-2)-1/(x-2)]·(x+2)/(x-1)
=[(x-1)/(x-2)]·(x+2)/(x-1)
=(x-2)/(x+2)