求y=1/3x³-½﹙a+a²﹚x²+a³x+a²的单调递减区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:39:36
x){W)[Z)K;g&ӝ fU@YP1K
Y-O{a=^NbTO[ljTVj$j'iV Ic[
DM+}ѽ4Y4C3m::T>yO> .:Q0w*'jl@ f
求y=1/3x³-½﹙a+a²﹚x²+a³x+a²的单调递减区间
求y=1/3x³-½﹙a+a²﹚x²+a³x+a²的单调递减区间
求y=1/3x³-½﹙a+a²﹚x²+a³x+a²的单调递减区间
y=1/3x³-½﹙a+a²﹚x²+a³x+a²
求导y'=x^2-(a+a^2)x+a^3=(x-a)(x-a^2)
若a=0或1,则a=a^2,y'≥0,y是增函数
若a0,则[a,a^2]是单减区间
若0