求lim(x→∞)1-cos2x/xsinx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 19:35:44
求lim(x→∞)1-cos2x/xsinx
x){)'3WQۤG4 u*+3*l+/! P"B3HAek"!^dǮ{'C-x6}>cy6Ԟ{MݠSyԹΆ'aԠ !B ~qAb3

求lim(x→∞)1-cos2x/xsinx
求lim(x→∞)1-cos2x/xsinx

求lim(x→∞)1-cos2x/xsinx
1-cos2x=1-(1-2*(sinX)^2)=2*(sinX)^2,1-cos2x/xsinx=2sinx/x
因为当x→∞时,1/x→0
又sinx为有界函数,|sinx|≤1
所以lim【x→∞】sinx/x=0
lim(x→∞)1-cos2x/xsinx=0