已知二次函数f(x)=ax2+bx++c,且不等式f(x)>2x的解是1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:17:40
已知二次函数f(x)=ax2+bx++c,且不等式f(x)>2x的解是1
xTMo@+{Yo"yGNEMi%J*h)4)n3^=/0PR73ohg4K)6qihOoc3wpEUM@̒mfč{VH\;@=9:LQZG$ByP~\kSEH1!P0Pk}4$iD " _1 z]UPpk,TY R""nD KuJ"/UZu\vKҢ

已知二次函数f(x)=ax2+bx++c,且不等式f(x)>2x的解是1
已知二次函数f(x)=ax2+bx++c,且不等式f(x)>2x的解是1试求f(x)的解析式

已知二次函数f(x)=ax2+bx++c,且不等式f(x)>2x的解是1
由题意,f(x)-2x=ax^2+(b-2)x+c=0的两根为1,3,且a=0,得:-1=

f(x) = ax^2 +bx + c 过(1,2),(3,6)两点
a+b+c = 2
9a + 3b + c = 6
b = 2-4a
c = 2-a-b = 2-a - 2 + 4a = 3a
f(x) = ax^2 + (2-4a)x + 3a
f(x) + 6a = ax^2 + (2-4a)x + 9a = 0
(2-4a)^2...

全部展开

f(x) = ax^2 +bx + c 过(1,2),(3,6)两点
a+b+c = 2
9a + 3b + c = 6
b = 2-4a
c = 2-a-b = 2-a - 2 + 4a = 3a
f(x) = ax^2 + (2-4a)x + 3a
f(x) + 6a = ax^2 + (2-4a)x + 9a = 0
(2-4a)^2 - 36a^2 > 0
4-16a + 16a^2 - 36a^2 >0
1-4a-5a^2 >0
(1-5a)(1+a) >0
a < -1
f(x) = -x^2 + 6x -3

收起

f(x)-2x=ax^2+(b-2)x+c=0的两根为1,3, 且a<0
由韦达定理:1+3=4=(2-b)/a, 1*3=3=c/a
故 b=2-4a, c=3a
f(x)+6a=ax^2+(2-4a)x+3a+6a=ax^2+2(1-2a)x+9a=0有两个实根,则
delta=4[(1-2a)^2-9a^2]=4(-5a^2-4a+1)=-4(5a-1)(a+...

全部展开

f(x)-2x=ax^2+(b-2)x+c=0的两根为1,3, 且a<0
由韦达定理:1+3=4=(2-b)/a, 1*3=3=c/a
故 b=2-4a, c=3a
f(x)+6a=ax^2+(2-4a)x+3a+6a=ax^2+2(1-2a)x+9a=0有两个实根,则
delta=4[(1-2a)^2-9a^2]=4(-5a^2-4a+1)=-4(5a-1)(a+1)>=0, 得:-1=综合得:-1=f(x)=ax^2+(2-4a)x+3a
若a为整数,则只能为a=-1, f(x)=-x^2+6x-3赞同0| 评论

收起