y=(1+1/x)^x (y等于1加x分之1的x次方)求导!y=(1+1/x)^x (y等于1加x分之1的x次方)求导!

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 20:33:00
y=(1+1/x)^x (y等于1加x分之1的x次方)求导!y=(1+1/x)^x (y等于1加x分之1的x次方)求导!
x)06ԯЌPШ|ɮ>ç] *v=m|VKų5 M۩lc{IaTOEj/nMSɃBu6<ٽMV]_EC&gPWVE] 'HSA_CF&S[Iu:vX,ٍ\ @ T+

y=(1+1/x)^x (y等于1加x分之1的x次方)求导!y=(1+1/x)^x (y等于1加x分之1的x次方)求导!
y=(1+1/x)^x (y等于1加x分之1的x次方)求导!
y=(1+1/x)^x (y等于1加x分之1的x次方)求导!

y=(1+1/x)^x (y等于1加x分之1的x次方)求导!y=(1+1/x)^x (y等于1加x分之1的x次方)求导!
y=(1+1/x)^x,
即y=e^ [x*ln(1+1/x)],
所以
y'= e^ [x*ln(1+1/x)] * [x*ln(1+1/x)] '

[x*ln(1+1/x)] '
= x' * ln(1+1/x) + x* [ln(1+1/x)] '
= ln(1+1/x) + x* [-(1/x^2) / (1+1/x)]
= ln(1+1/x) - 1/(x+1)

y'= e^ [x*ln(1+1/x)] * [x*ln(1+1/x)] '
= e^ [x*ln(1+1/x)] * [ln(1+1/x) - 1/(x+1)]
= (1+1/x)^x * [ln(1+1/x) - 1/(x+1)]