1.已知f(x)=(x+1)|x-1|,若关于x的方程f(x)=x+m有三个不同的实数解,求m的取值范围2.已知f(x)=ax^2+x(a属于R且a≠0)对任意的实数x1,x2比较1/2【f(x1)+f(x2)】与f(x1+x2)/2的大小若方程f(x)=2的

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 10:21:54
1.已知f(x)=(x+1)|x-1|,若关于x的方程f(x)=x+m有三个不同的实数解,求m的取值范围2.已知f(x)=ax^2+x(a属于R且a≠0)对任意的实数x1,x2比较1/2【f(x1)+f(x2)】与f(x1+x2)/2的大小若方程f(x)=2的
xTn@~[^^ހj% r@'U m(PBhhkJٵ)ٵA M=J3}3ߌ$#q 1! :k4 ׶qR떉~:y`tY..m]<̵ 4n<$8: uWI6Y,мqcEr ?ip:$~h `0WM$S_RAA@C^ߦfhw ^#>750TĘhz w;U2OGvVh{ЕXᖇ@Ǡ:?Kܼ!Er0WQ3s6",~JKbY<0p, 9j-|#gbeQ2*p9$C1eO2haQI:XC7?[(Vwn^9 ]PbSǢoM|&3"*ZB lh!Yg`2&N8`~͘d-8nKL209رsS!$z gm*n|auFdOM

1.已知f(x)=(x+1)|x-1|,若关于x的方程f(x)=x+m有三个不同的实数解,求m的取值范围2.已知f(x)=ax^2+x(a属于R且a≠0)对任意的实数x1,x2比较1/2【f(x1)+f(x2)】与f(x1+x2)/2的大小若方程f(x)=2的
1.已知f(x)=(x+1)|x-1|,若关于x的方程f(x)=x+m有三个不同的实数解,求m的取值范围
2.已知f(x)=ax^2+x(a属于R且a≠0)
对任意的实数x1,x2比较1/2【f(x1)+f(x2)】与f(x1+x2)/2的大小
若方程f(x)=2的两个根分别在(-1,0)和(0,1)内,求实数a的取值范围

1.已知f(x)=(x+1)|x-1|,若关于x的方程f(x)=x+m有三个不同的实数解,求m的取值范围2.已知f(x)=ax^2+x(a属于R且a≠0)对任意的实数x1,x2比较1/2【f(x1)+f(x2)】与f(x1+x2)/2的大小若方程f(x)=2的
1.作图,f(x)=(x+1)|x-1|分为x≥1,x<1两部分,这个图与f(x)=x+m的图有三个不同的交点,从图上可以看出,m的范围在两个切线之间,f(x)=x+m斜率为1,其中一条切线与1-x^2的切线重合,切点为(-1/2,3/4),代入f(x)=x+m解得m=5/4,
另一个临界点为(1,0),代入f(x)=x+m解得m=-1,所以m∈(-1,5/4)
2.1/2[f(x1)+f(x2)]-f(x1+x2)/2=-ax1x2
分类讨论比较
f(x)-2=ax^2+x-2=0的两个根分别在(-1,0)和(0,1)内,即为两种情况
①f(0)<0且f(1),f(-1)>0
②f(0)>0且f(1),f(-1)<0
又f(0)=-2,所以为第一种情况
f(1)=a-1>0
f(-1)=a-3>0
所以a的范围是(3,+∞)
(加分啊………………)