证明:tan[3x/2]-tan[x/2]=2sinx/[cosx+cos2x]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:46:23
证明:tan[3x/2]-tan[x/2]=2sinx/[cosx+cos2x]
x){ٌ>ļh }X] İ5*̫ЏN/F6IEi/!H&H*HUCB ˆYO;`z` tazcn@Uf. +9BSO{=t:i <x6i{uLx[F 1P

证明:tan[3x/2]-tan[x/2]=2sinx/[cosx+cos2x]
证明:tan[3x/2]-tan[x/2]=2sinx/[cosx+cos2x]

证明:tan[3x/2]-tan[x/2]=2sinx/[cosx+cos2x]
tan(3x/2)-tan(x/2)
=sin(3x/2)/cos(3x/2)-sin(x/2)/cos(x/2)(通分)
=[sin(3x/2)cos(x/2)-cos(3x/2)sin(x/2)]/[cos(3x/2)cos(x/2)]
=sin(3x/2-x/2]/[(1/2)(cos2x+cosx)(积化和差)
=2sinx/(cosx+cos2x)
故原式成立.