多项式4x²+y²-4x+6y+13的最小值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:21:18
多项式4x²+y²-4x+6y+13的最小值为
xn1_ *Jm1dQK2@!D* 6A,X JB\ˠN+^$Bds~u8g'},s6~ V{Zظ'mL<]Ny1]\~0Tu]oӣޞ~'#<'1RI#I5̕A*`Lu0)fNq8pz ν̣حXXX kZj!NplKoyH3,M J)͵ՀE:dYvZ@e8+% P, ?xO+)8( 91[ԞJ:76\R45@׊&ֺМi~7Em%\Φϋ//Kix|yhٯDwƇjaIJ^|*uvNw'6*

多项式4x²+y²-4x+6y+13的最小值为
多项式4x²+y²-4x+6y+13的最小值为

多项式4x²+y²-4x+6y+13的最小值为





4x²+y²-4x+6y+13
=4x²-4x+1+y²+6y+9+3
=(2x-1)²+(y+3)²+3
因为(2x-1)²>=0,(y+3)²>=0
所以当2x-1=0以及y+3=0时,原式有最小值3

4x²+y²-4x+6y+13
=(4x^2-4x+1)+(y^2+6y+9)+3
=(2x-1)^2+(y+3)^2+3
≥3
多项式4x²+y²-4x+6y+13的最小值为3