方程x^2+y^2+4kx-2y+5k=0表示的曲线是圆,则k的取值范围是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 02:39:47
方程x^2+y^2+4kx-2y+5k=0表示的曲线是圆,则k的取值范围是
x){6mqFڕ@l]kTmmkbKv=l?63bO=m-@"}*_`gCMWi Q"45FS6qLtA P-Fٚ m@Q VD4WP$dF6 e$A}e`;P:mC[O{7{2PԼXwX  .17Qx1-ٍt^

方程x^2+y^2+4kx-2y+5k=0表示的曲线是圆,则k的取值范围是
方程x^2+y^2+4kx-2y+5k=0表示的曲线是圆,则k的取值范围是

方程x^2+y^2+4kx-2y+5k=0表示的曲线是圆,则k的取值范围是
(x^2 +4kx +4k^2) +(y^2-2y +1) +(5k -4k^2 -1)=0
(x+2k)^2 +(y-1)^2 =(4k^2-5k+1)
4k^2 -5k +1 >0
(4k -1)(k-1)>0
k1

x^2+y^2+4kx-2y+5k=x^2+4kx+4k^2+y^2-2y+1=4k^2-5k+1即
(x+2k)^2+(y-1)^2=4k^2-5k+1即要
4k^2-5k+1>0
(4k -1)(k-1)>0
k<1/4 或k>1