(1/x)+x=3,则x²/(x⁴+x²+1)=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 11:30:25
x)0ԯԮ5y1BMZ Z*m~OMR>zlȳ2"[C}8#mCm
qF0h
fa,LF 1(04iDEy0A l35̵
5sK^tgv>7Y`pSAnl-74<Tə9iGӵ/Pczi,yЄE6 Ny n
(1/x)+x=3,则x²/(x⁴+x²+1)=?
(1/x)+x=3,则x²/(x⁴+x²+1)=?
(1/x)+x=3,则x²/(x⁴+x²+1)=?
x²/(x⁴+x²+1)
=1/(x^2+1+1/x^2)
=1/[(x+1/x)^2-1]
=1/8
(1/x)+x=3,
(1/x)^2+2+x^2=9
(1/x)^2+x^2=7
则x²/(x⁴+x²+1)
=1/(x²+1+1/x²)
=1/(7+1)
=1/8
(1/x)+x=3 两边平方得:
1/x²+2+x²=9 即:1/x²+x²=7
x²/(x⁴+x²+1)
=1/(x²+1+1/x²)
=1/(7+1)
=1/8
分子分母都除以x²,得到1/x²+1+1/x²。x²+1+1/x²=[(1/x)+x]²-1=8.所以答案1/8