29、(7分)已知:△ABC,射线BE、CF分别平分∠ABC和∠ACB,且BE、CF相交于点O.(1)求证:∠BOC=90°+ ∠A(2)若将条件“CF平分∠ACB”改为“CF平分与∠ACB相邻的外角”,其它条件不变.试问(1)中
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:08:35
29、(7分)已知:△ABC,射线BE、CF分别平分∠ABC和∠ACB,且BE、CF相交于点O.(1)求证:∠BOC=90°+ ∠A(2)若将条件“CF平分∠ACB”改为“CF平分与∠ACB相邻的外角”,其它条件不变.试问(1)中
29、(7分)已知:△ABC,射线BE、CF分别平分∠ABC和∠ACB,且BE、CF相交于点O.
(1)求证:∠BOC=90°+ ∠A
(2)若将条件“CF平分∠ACB”改为“CF平分与∠ACB相邻的外角”,其它条件不变.试问(1)中的结论是否仍成立?若成立说明理由;若不成立,请找出∠BOC与∠A的关系并予证明
29、(7分)已知:△ABC,射线BE、CF分别平分∠ABC和∠ACB,且BE、CF相交于点O.(1)求证:∠BOC=90°+ ∠A(2)若将条件“CF平分∠ACB”改为“CF平分与∠ACB相邻的外角”,其它条件不变.试问(1)中
证明:(1)∵∠A+∠ABC+∠ACB=180°,
∴∠ABC+∠ACB=180°-∠A.
∵BE平分∠ABC,CF平分∠ACB,
∴∠OBC= 1/2∠ABC,∠OCB= 1/2∠ACB.
∴∠OBC+∠OCB=90°- 1/2∠A.
∴∠BOC=180°-(∠OBC+∠OCB)=90°+ 1/2∠A.
(2)(1)中的结论不成立.
∠B0C= 1/2∠A.
证明:∵∠ACD是△ABC的外角,
∠ACD=∠ABC+∠A,
∵BE平分∠ABC,CF平分∠ACD,
∴∠EBD= 1/2∠ABC,∠FCD= 1/2∠ACD.
∴∠FCD=∠EBD+ 1/2∠A.
∴∠FCD=∠EBD+∠BOC.
∴∠BOC= 1/2∠A.
证明:(1)∵∠A+∠ABC+∠ACB=180°,
∴∠ABC+∠ACB=180°-∠A.
∵BE平分∠ABC,CF平分∠ACB,
∴∠OBC=$\frac{1}{2}$∠ABC,∠OCB=$\frac{1}{2}$∠ACB.
∴∠OBC+∠OCB=90°-$\frac{1}{2}$∠A.
∴∠BOC=180°-(∠OBC+∠OCB)=90°+$\frac{...
全部展开
证明:(1)∵∠A+∠ABC+∠ACB=180°,
∴∠ABC+∠ACB=180°-∠A.
∵BE平分∠ABC,CF平分∠ACB,
∴∠OBC=$\frac{1}{2}$∠ABC,∠OCB=$\frac{1}{2}$∠ACB.
∴∠OBC+∠OCB=90°-$\frac{1}{2}$∠A.
∴∠BOC=180°-(∠OBC+∠OCB)=90°+$\frac{1}{2}$∠A.
(2)(1)中的结论不成立.
∠B0C=$\frac{1}{2}$∠A.
证明:∵∠ACD是△ABC的外角,
∠ACD=∠ABC+∠A,
∵BE平分∠ABC,CF平分∠ACD,
∴∠EBD=$\frac{1}{2}$∠ABC,∠FCD=$\frac{1}{2}$∠ACD.
∴∠FCD=∠EBD+$\frac{1}{2}$∠A.
∴∠FCD=∠EBD+∠BOC.
∴∠BOC=$\frac{1}{2}$∠A.
收起