(123456789/123456788-123456788/123456789)÷(1/123456788+1/123456789)简便算法

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 05:18:44
(123456789/123456788-123456788/123456789)÷(1/123456788+1/123456789)简便算法
xTn0~KH(YYZT1~T 6v0D7] zAWCVUn!wn6[x)5}-i[!U$Hb.d𕐖D5fmה|Mi/O_6hL˭>l?r>pn:|{TroXAtOkVЕ0_Y9BK﷫„reb/\Y˺T &yi*><_<ѩ| LMO)jXwƾ.4q E{:1^d}0.p sDJqBu 2aJҤ:zmT b XPeoU-G<݋p̟Mw; P#}چ lٓV~u/<9G e d0Bl}T#?PSGP=,#x0r`Iz:

(123456789/123456788-123456788/123456789)÷(1/123456788+1/123456789)简便算法
(123456789/123456788-123456788/123456789)÷(1/123456788+1/123456789)
简便算法

(123456789/123456788-123456788/123456789)÷(1/123456788+1/123456789)简便算法
转换一下,a=123456788,b=123456789
原式=(b/a-a/b)/(1/a+1/b)
=[(b^2-a^2)/ab]/[(b+a)/ab]
=(b^2-a^2)/(b+a)
=(b+a)(b-a)/(b+a)
=b-a
=123456789-123456788
=1

(123456789/123456788-123456788/123456789)÷(1/123456788+1/123456789)
=(1+1/123456788-1+1/123456789)÷(1/123456788+1/123456789)
=(1/123456788+1/123456789)÷(1/123456788+1/123456789)
=1

原式=(1 1/123456788-1 1/123456789)/(1/123456788 1/123456789)=1
简便算法的核心就是把分子分离一下化简 如123456789/123456788=(123456788 1)/123456788

X=123456789,123456788=X-1
原式=[X/(X-1)-(X-1)/X]/[1/(X-1)+1/X]
=[(X²-(X-1)²)/(X(X-1))]/[(X+(X-1))/(X(X-1))]
=[X²-(X²-2X+1)]/[2X-1]
=(2X-1)/(2X-1)
= 1
答案与X无关

(123456789/123456788-123456788/123456789)÷(1/123456788+1/123456789)
=[(123456789^2-123456788^2)/(123456788*123456789)]/[(123456788+123456789)/(123456788*123456789)]
=(123456789^2-123456788^2)/(123456788+123456789)
=123456789-123456788=1

设 123456789 = a, 123456788 = b;
则原式变作
( a/b - b/a ) / ( 1/b + 1/a ) = ( a^2 - b^2) / ab * ab / ( a + b) = a - b = 123456789 - 123456788 = 1;

答案是1,
正确的话 给个最佳答案,码字不容易呢