若不等式n+1/1+n+2/1+n+3/1+…+3n+1/1>24/a对一切n成立,求正整数a最大值,证明结论

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 07:30:46
若不等式n+1/1+n+2/1+n+3/1+…+3n+1/1>24/a对一切n成立,求正整数a最大值,证明结论
xRN@~ /B<dž HI)Ũbr+8Z QO\6};#1plU+i i%a:L,n&db[%zYz}4xQ6_is"ӎJwDżgV]{tpvJyi>nS +(}8#@"C`Ήk"Ur"ݦM7qmRdy ,،,03`b?T E.!/!paVӖRmmp?A bJBe:*J~dnަf@;W9gW>!J9ZfQwj|PԧrJAyR 5밬> `!emUxH{u

若不等式n+1/1+n+2/1+n+3/1+…+3n+1/1>24/a对一切n成立,求正整数a最大值,证明结论
若不等式n+1/1+n+2/1+n+3/1+…+3n+1/1>24/a对一切n成立,求正整数a最大值,证明结论

若不等式n+1/1+n+2/1+n+3/1+…+3n+1/1>24/a对一切n成立,求正整数a最大值,证明结论
设:f(n)=[1/(n+1)]+[1/(n+2)]+[1/(n+3)]+…+[1/(3n+1)]
则:f(n+1)=[1/(n+2)]+[1/(n+3)]+[1/(n+4)]+…+[1/(3n+2)]+[1/(3n+3)]+[1/(3n+4)]
两式相减,得:
f(n+1)-f(n)=[1/(3n+2)]+[1/(3n+3)]+[1/(3n+4)]-[1/(n+1)]
=[1/(3n+2)]-[1/(3n+3)]+[1/(3n+4)]-[1/(3n+3)]
=1/[(3n+2)(3n+3)]-1/[(3n+3)(3n+4)]>0
即:f(n+1)>f(n)
从而,f(n)是递增的,即f(n)的最小值是f(1)
则:
a/24

看起来有点乱,到底那个是分母那个是分子,最好拿括号扩起来,
比如(n+1)/(1+n)+2/(1+n)

好乱