若不等式n+1/1+n+2/1+n+3/1+…+3n+1/1>24/a对一切n成立,求正整数a最大值,证明结论
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 07:30:46
xRN@~/B<džHI)Ũbr+8ZQO\6};#1plU+i i%a:L,n&db[%zYz}4xQ6_is"ӎJwDżgV]{tpvJyi>nS
+(}8#@"C`Ήk"Ur"ݦM7qmRdy ,،,03`b?T E.!/!paV ӖRmmp?AbJBe:*J~dnަf@;W9gW>!J9ZfQwj|PԧrJAyR5밬> `!emUxH{ u
若不等式n+1/1+n+2/1+n+3/1+…+3n+1/1>24/a对一切n成立,求正整数a最大值,证明结论
若不等式n+1/1+n+2/1+n+3/1+…+3n+1/1>24/a对一切n成立,求正整数a最大值,证明结论
若不等式n+1/1+n+2/1+n+3/1+…+3n+1/1>24/a对一切n成立,求正整数a最大值,证明结论
设:f(n)=[1/(n+1)]+[1/(n+2)]+[1/(n+3)]+…+[1/(3n+1)]
则:f(n+1)=[1/(n+2)]+[1/(n+3)]+[1/(n+4)]+…+[1/(3n+2)]+[1/(3n+3)]+[1/(3n+4)]
两式相减,得:
f(n+1)-f(n)=[1/(3n+2)]+[1/(3n+3)]+[1/(3n+4)]-[1/(n+1)]
=[1/(3n+2)]-[1/(3n+3)]+[1/(3n+4)]-[1/(3n+3)]
=1/[(3n+2)(3n+3)]-1/[(3n+3)(3n+4)]>0
即:f(n+1)>f(n)
从而,f(n)是递增的,即f(n)的最小值是f(1)
则:
a/24
看起来有点乱,到底那个是分母那个是分子,最好拿括号扩起来,
比如(n+1)/(1+n)+2/(1+n)
好乱
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
证明不等式 1+2n+3n
不等式证明,1/(n+1)+1/(n+2)+1/(n+3)+..+1/3n>4n/(4n+1)
证明不等式 3^n>(n+1)!
不等式求解法:n*(n+1)/2
1.使不等式1/(n+1)+1/(n+2)+1/(n+3)+...+1/(2n+1)
若关于n的不等式1/(n+1)+1/(n+2)+...+1/(2n)
证明对任意正整数n,不等式ln(1/n+1)>1/n^2-1/n^3
解不等式n(n+1)(2n-1)
证明不等式:(1/n)的n次方+(2/n)的n次方+……+(n/n)的n次方
求使不等式/3n/2n+1-3/2/
设n是自然数,证明不等式:(1/n+1) +(1/n+2)+(1/n+3)+……+1/3n
证明不等式 (n+1)/3
证明对任意的正整数n,不等式In(n+1)/n<(n+1)/n^2证明对任意的正整数n,不等式In(n+1)/n
设n为自然数,求证1/(n+1)+1/(n+2)+1/(n+3)+...+1/(3n)>4n/(4n+1)用柯西不等式证明
数学不等式证明题n=1,2,……证明:(1/n)^n+(1/2)^n+……+(n/n)^n第二个是(2/n)^n
2^n/n*(n+1)
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简