如图,AB=AC,AD=AE,BD=CE,BD与CE相交于点O.求证:∠CAB=∠EAD=∠BOC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 10:54:48
如图,AB=AC,AD=AE,BD=CE,BD与CE相交于点O.求证:∠CAB=∠EAD=∠BOC
xRMk@+(Xb+骃@VVȥ[}r BBa'/tv%r@.}3f0_} 6l"؎ev,¾˛qo_w9}~]|*_p @}2 G7L:UV7}:|ɏM(I%$Aɡ.I`"MG=D IȒ5CF"TWL:@q!CT$R*:2BUЄ&j(KQL%TB񃴨Eh1E@St=PU"c +ǪZ`]b?||W|ww|6l.D㕍Yh.N͹JW`F+*1UzrY[sۤ, Ixhuu MobG{5A[^"q%bgwuV|te[dZKY}ڽ*3

如图,AB=AC,AD=AE,BD=CE,BD与CE相交于点O.求证:∠CAB=∠EAD=∠BOC
如图,AB=AC,AD=AE,BD=CE,BD与CE相交于点O.求证:∠CAB=∠EAD=∠BOC

如图,AB=AC,AD=AE,BD=CE,BD与CE相交于点O.求证:∠CAB=∠EAD=∠BOC
证明:
∵AB=AC,AD=AE,BD=CE
∴△ABD≌△ACE (SSS)
∴∠BAD=∠CAE,∠B=∠C
∵∠CAB=∠BAD-∠CAD,∠EAD=∠CAE-∠CAD
∴∠CAB=∠EAD
∵∠BFC=∠CAB+∠B,∠BFC=∠BOC+∠C
∴∠CAB+∠B=∠BOC+∠C
∴∠CAB=∠BOC
∴∠CAB=∠EAD=∠BOC

∵AB=AC,AD=AE,BD=CE
∴△ACE≌△ABD
∴∠BAD=∠CAE, ∠ABD=∠ACE
∴∠CAB+∠CAD=∠CAD+∠EAD
即∠ CAB=∠EAD
∵∠BFA=∠CFO
∠ABD=∠ACE即∠ABF=∠FCO
∴△ABF∽△OCF(相似)
∴∠FOC=∠FAB
即∠BOC=∠CAB
∴∠CAB=∠EAD=∠BOC