在三角形abc中,sinA=cosB+cosC分之sinB+sinC,判断这个三角形的形状.有没有简单的方法?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:22:35
在三角形abc中,sinA=cosB+cosC分之sinB+sinC,判断这个三角形的形状.有没有简单的方法?
x){:gœ/OzwQbRku3m󋝴ӎ';bN@Yiǒg־?ɎUpgȮmzt>۴H>_w*Pٴ6OI*ҧmv6tݺg3? Yi<]dGX pK55Tpv$ 9Ki p@pPP.v;I F&$?XHb0պ0% F\QгΆ'ٶOw-Ax<;PJfm

在三角形abc中,sinA=cosB+cosC分之sinB+sinC,判断这个三角形的形状.有没有简单的方法?
在三角形abc中,sinA=cosB+cosC分之sinB+sinC,判断这个三角形的形状.有没有简单的方法?

在三角形abc中,sinA=cosB+cosC分之sinB+sinC,判断这个三角形的形状.有没有简单的方法?
它是直角三角形.原因如下.
sinA=(sinB+sinC)/(cosB+cosC)
sin(B+C)=(sinB+sinC)/(cosB+cosC)
sinBcosC+cosBsinC=(sinB+sinC)/(cosB+cosC)
sinBcosBcosC+sinB(cosC)^2+(cosB)^2sinC+cosBsinCcosC=sinB+sinC
sinBcosBcosC+cosBsinCcosC=sinB-sinB(cosC)^2+sinC-(cosB)^2sinC
sinBcosBcosC+cosBsinCcosC=sinB(sinC)^2+(sinB)^2sinC
cosBcosC(sinB+sinC)=sinBsinC(sinB+sinC)
(cosBcosC-sinBsinC)(sinB+sinC)=0
cos(B+C)(sinB+sinC)=0
sinB+sinC≠0
所以cos(B+C)=0
B+C=90度,直角三角形