老师在黑板上写出四个等式:1²+(1×2)²+2²=(1×2+1)²,2²+(2×3)²+3²=(2×3+1)²,3²+(3×4)²+4²=(3×4+1)²,4²+(4×5)²+5&

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 19:17:21
老师在黑板上写出四个等式:1²+(1×2)²+2²=(1×2+1)²,2²+(2×3)²+3²=(2×3+1)²,3²+(3×4)²+4²=(3×4+1)²,4²+(4×5)²+5&
xN0Ƅ ێh9L }f(H"z$M0$RWY7<n@x沵kگewgr}K8lr֎X~Zk kf%zYB=@@W%%cBׄ kB"t9 kFҝ<8|4OAjگS8A33|p@$k !`>վܓUfH!fA4UrX**jL*QeV'k ]/ _c6j p9j^Gu- OV M_xh\

老师在黑板上写出四个等式:1²+(1×2)²+2²=(1×2+1)²,2²+(2×3)²+3²=(2×3+1)²,3²+(3×4)²+4²=(3×4+1)²,4²+(4×5)²+5&
老师在黑板上写出四个等式:1²+(1×2)²+2²=(1×2+1)²,2²+(2×3)²+3²=(2×3+1)²,3²+(3×4)²+4²=(3×4+1)²,4²+(4×5)²+5²=(4×5+1)²...
(1)请你对此提规律写出第2012个等式;
(2)请你类似的写第n个等式;
(3)证明第n个等式的正确性.

老师在黑板上写出四个等式:1²+(1×2)²+2²=(1×2+1)²,2²+(2×3)²+3²=(2×3+1)²,3²+(3×4)²+4²=(3×4+1)²,4²+(4×5)²+5&
(1)2012²+(2012X2013)²+2013²=(2012X2013+1)²
(2)n²+[n(n+1)]²+(n+1)²=[n(n+1)+1]²
(3)n²+[n(n+1)]²+(n+1)²
=n²+[n(n+1)]²+(n+1)²
=n²+n²(n+1)²+(n+1)²
=n²+(n²+1)(n+1)²
=n²+(n²+1)(n²+2n+1)
=n²+(n²+1)(n²+1+2n)
=n²+(n²+1)²+2n(n²+1)
=(n²+1)²+2n(n²+1)+n²
=(n²+1+n)²
=(n²+n+1)²
=[n(n+1)+1]²