a,b∈R,a^2+2b^2=6,则a+b的最小值是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 05:20:21
a,b∈R,a^2+2b^2=6,则a+b的最小值是
xSn@~6^E!F%Dć- Ł$iKyk^XEHp3}[tDS׆8s%t#` 8is .A94Ra-cHmʘx74C?F5M^khgqI‘φ׺F TV!4SxgY g(^ h$G\Ȃ ]1oZ?隬 8jPkv[8N+ :g,S="Q)HaQ&7ѓzNb*W(ٻ}nd&/m!2/wAhH+GLǪhs;_W莖M9Cu(wYa#H_` z0Ĝag̓`>f~A!iՕEb ]n{oE'\znxG ݝQ?WT5ZJ[1S)hVl{V_:3ɑ{*밭 :̡D

a,b∈R,a^2+2b^2=6,则a+b的最小值是
a,b∈R,a^2+2b^2=6,则a+b的最小值是

a,b∈R,a^2+2b^2=6,则a+b的最小值是
解法1:判别式法.
设a+b=t,则a=t-b.[1]
代入条件得:(t-b)^2+2b^2=6,
3b^2-2tb+(t^2-6)=0.[2]
∵b是实数,∴判别式Δ≥0,
即4t^2-12(t^2-6)≥0,
化简得:t^2≤9,
∴-3≤t≤3.
当t=-3时,由[2]得b=-1,代入[1]得a=-2.
所以a+b的最小值是-3(当a=-2,b=-1时取到).
解法2:三角换元法
a^2+2b^2=6→(a^2)/6+(b^2)/3=1,
设a=(根6)cosx,b=(根3)sinx,这里x∈R.
a+b=(根3)sinx+(根6)cosx
=根号下[(根3)^2+(根6)^2]sin(x+θ).[1]
=3sin(x+θ),(其中θ是辅助角)
而sin(x+θ)的最小值是-1,
所以a+b的最小值是-3.
说明:[1]式用到公式:asinx+bcosx=根号(a^2+b^2)*sin(x+θ),
其中“辅助角θ”满足条件“tanθ=b/a”,而辅助角θ的象限位置由点(a,b)的象限位置决定.

因为
6=a^2+2b^2≥2√(2ab)
所以
ab ≤9/2
又因为
a+b≥2√(ab)=9