斜率为1,在y轴上的截距为b的直线L与椭圆x2/4+y2/2=1交于A,B两点,o是原点,当△AOB的面积最大时,求L的方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 22:50:31
斜率为1,在y轴上的截距为b的直线L与椭圆x2/4+y2/2=1交于A,B两点,o是原点,当△AOB的面积最大时,求L的方程
xTn@`[H(#" ;Rb+BIԨEQ(lExf`_蝇ͣ> ̹;)eIۡp(#ͼ H.gdjfȯ;8nчzwr\>`mWZ зֻ$ZduH8ԓ\7+PeEIK2ǐ î?-\̤d1 iXmCL$&-FOh*^ fڥ .WϕDe_;

斜率为1,在y轴上的截距为b的直线L与椭圆x2/4+y2/2=1交于A,B两点,o是原点,当△AOB的面积最大时,求L的方程
斜率为1,在y轴上的截距为b的直线L与椭圆x2/4+y2/2=1交于A,B两点,o是原点,当△AOB的面积最大时,求L的方程

斜率为1,在y轴上的截距为b的直线L与椭圆x2/4+y2/2=1交于A,B两点,o是原点,当△AOB的面积最大时,求L的方程
直线L的方程显然是y=x+b.
联立:y=x+b、x^2/4+y^2/2=1,消去y,得:x^2/4+(x+b)^2/2=1,
∴x^2+2(x^2+2bx+b^2)=4,∴3x^2+4bx+2b^2-4=0.
∵点A、B都在直线L上,∴可令A、B的坐标分别是(m,m+b)、(n,n+b).
显然,m、n是方程3x^2+4bx+2b^2-4=0的两根,∴由韦达定理,有:
m+n=-4b/3、mn=(2b^2-4)/3.
改写直线L的方程,得:x-y+b=0,∴点O的AB的距离d=|b|/√2.
又|AB|=√[(m-n)^2+(m+b-n-b)^2]=√2×√[(m+n)^2-4mn]
=√2×√[16b^2/9-4(2b^2-4)/3]=(4/3)√(2b^2-3b^2+6)=(4/3)√(6-b^2).
∴△AOB的面积
=(1/2)|AB|d=(1/2)(|b|/√2)(4/3)√(6-b^2)
=(√2/3)√(6b^2-b^4)=(√2/3)√[9-(9-9b^2+b^4)]
=(√2/3)√[9-(3-b^2)^2].
∴当b^2=3时,△AOB的面积有最大值,由b^2=3,得:b=√3,或b=-√3.
∴满足条件的直线L的方程有两条,分别是:y=x=√3; y=x-√3.