设x,y>0,不等式根号下x+根号下y≤a根号下(x+y)恒成立,求实数a最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 00:25:48
设x,y>0,不等式根号下x+根号下y≤a根号下(x+y)恒成立,求实数a最小值
x){n_NΓv>lΧ۟І3+u.I4*+55Nz1nglgsnڰ&HVFh:btUHjVhCFH+5l lsthiGCUhb1, d()$>rK?gt²3d

设x,y>0,不等式根号下x+根号下y≤a根号下(x+y)恒成立,求实数a最小值
设x,y>0,不等式根号下x+根号下y≤a根号下(x+y)恒成立,求实数a最小值

设x,y>0,不等式根号下x+根号下y≤a根号下(x+y)恒成立,求实数a最小值
[a根号下(x+y)]^2-[根号下x+根号下y]^2= (a^2-1)x+(a^2-1)y-2根号下(xy)>=0 =>(a^2-1)(根号下x-根号下y)^2+[(a^2-1)*2-2]根号下(xy)>=0 =>a^2-1>=0,[(a^2-1)*2-2]>=0 =>a^2>=2 a必须大于0,否则不等式不成立,所以a>=根号2.实数a最小值为根号2.