当n趋向无穷大时,求 ((1^2+2^2+…n^2)/(n+1)^2-n/3)的极限?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 10:01:41
当n趋向无穷大时,求 ((1^2+2^2+…n^2)/(n+1)^2-n/3)的极限?
x){wrދmO'L|6}۟.Yl6g4036G 45 5t5jy6 6IET2IΆBUjVa"*pT U&dTQB.>Vd-($.zh@ )QеSqlv}_\g JP޹

当n趋向无穷大时,求 ((1^2+2^2+…n^2)/(n+1)^2-n/3)的极限?
当n趋向无穷大时,求 ((1^2+2^2+…n^2)/(n+1)^2-n/3)的极限?

当n趋向无穷大时,求 ((1^2+2^2+…n^2)/(n+1)^2-n/3)的极限?
1^2+2^2+…n^2=n(n+1)(2n+1)/6
(1^2+2^2+…n^2)/(n+1)^2=n(2n+1)/6(n+1)
((1^2+2^2+…n^2)/(n+1)^2-n/3)= n(2n+1) - 2n(n+1)
-----------------------------
6(n+1)
=-n/6(n+1)
当n趋向无穷
-n/6(n+1) -> -n/6n = - 1/6