证明n趋向无穷时,5n^2/(7n-n^2)的极限等于-5

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 22:10:54
证明n趋向无穷时,5n^2/(7n-n^2)的极限等于-5
x){ٌۺNl+?M4/H_l^˙|O&HLv6ؚ ,dGד@z^\UjjB@a\ 1L0i{=꘧7hCv˦OvvHyD0$a.0OG

证明n趋向无穷时,5n^2/(7n-n^2)的极限等于-5
证明n趋向无穷时,5n^2/(7n-n^2)的极限等于-5

证明n趋向无穷时,5n^2/(7n-n^2)的极限等于-5
lim5n^2/(7n-n^2)
上下同除n^2
=lim(5/(7/n-1))
=5/(lim7/n-1)
=5/(0-1)
=-5

原式=lim(n->∞) 5/(7/n-1)
=5/(0-1)
=-5

lim5n^2/(7n-n^2)
上下同除n^2
那么
原式=lim(5/(7/n-1))
=5/(lim7/n-1)
=5/(0-1)
=-5