如图,在ΔABC中,∠BAC=90°,AB=AC,CD‖BA,点P是BC上一点,连结AP,过点P做PE⊥AP交C,探究PA与PE的数量关系.PE⊥AP交CD于E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 13:31:41
如图,在ΔABC中,∠BAC=90°,AB=AC,CD‖BA,点P是BC上一点,连结AP,过点P做PE⊥AP交C,探究PA与PE的数量关系.PE⊥AP交CD于E
xUnA~ h&&۽d2O`@K@BRVyB6d^fgvliʕ0gwsfX.߹0*l=1Fo͗OLbhy"vCy2>r|$ BAJ9¼mu#[f_0Լ.Tx5%_v޼KS@![Ņ(d N7#&2.Cjx,#Bm傳3txPxK*y;aS =xmѵb[ \x'ȧxj4N_^+nu3;.1nE@71ި Krg*EZU `d,c2ePWQ# Z&~$E 0jMm@RI Jx`ј6וEfܪ>+zUA3Ϟ_554~gE4 AXD; Ok^O !@Iq% LQ08wJƥdH "S*fq§Mc4 AMu>t 4U@#’?aq(ЇNTbck??J)}pM} ){:}$R+at%XGY. 1hռ5{rQ=F;T-WDf00 +EIϾ~(-

如图,在ΔABC中,∠BAC=90°,AB=AC,CD‖BA,点P是BC上一点,连结AP,过点P做PE⊥AP交C,探究PA与PE的数量关系.PE⊥AP交CD于E
如图,在ΔABC中,∠BAC=90°,AB=AC,CD‖BA,点P是BC上一点,连结AP,过点P做PE⊥AP交C,探究PA与PE的数量关系.
PE⊥AP交CD于E

如图,在ΔABC中,∠BAC=90°,AB=AC,CD‖BA,点P是BC上一点,连结AP,过点P做PE⊥AP交C,探究PA与PE的数量关系.PE⊥AP交CD于E
结论:PA=PE
证明:过点P作PM⊥AC,垂足为M,
过点P作PN⊥CD,垂足为N.
∵AB=AC(已知)
∴∠B=∠ACB(等边对等角)
∵CD‖BA(已知)
∴∠B=∠BCN(两直线平行,内错角相等)
∴∠ACB=∠BCN(等量代换)
又∵PM⊥AC,PN⊥CD(已作)
∴PM=PN(角平分线上的点到角两边的距离相等)
∵在△ABC中,∠BAC+∠B+∠ACB=180°(三角形内角和180°)
且∠BAC=90°(已知),∠B=∠ACB(已证)
∴∠B=∠ACB=45°
又∵∠B=∠BCN(已证)
∴∠BCN=45°(等量代换)
∵PM⊥AC,PN⊥CD(已作)
∴∠CMP=90°,∠CNP=90°(垂直定义)
∵△CMP中,∠CMP+∠ACB+∠MPC=180°(三角形内角和180°)
且∠CMP=90°,∠ACB=45°(已证)
∴∠MPC=180°-∠CMP-∠ACB
=180°-90°-45°
=45°
∵△CNP中,∠CNP+∠BCN+∠NPC=180°(三角形内角和180°)
且∠CNP=90°,∠ACN=45°(已证)
∴∠NPC=180°-∠CNP-∠ACN
=180°-90°-45°
=45°
∴∠MPC+∠NPC=45°+45°=90°
即∠MPN=90°
∵PE⊥AB(已知)
∴∠APE=90°(垂直定义)
∴∠MPN=∠APE
∴∠MPN-∠MPE=∠APE-∠MPE(等量减等量,差相等)
即∠APM=∠EPN
∵PM⊥AC,PN⊥CD(已作)
∴∠AMP=∠ENP(垂直定义)
在△APM和△EPN中
∠APM=∠EPN(已证)
PM=PN(已证)
∠AMP=∠PNE(已证)
∴△APM≌△EPN(ASA)
∴AP=AE(全等三角形的对应边相等)

如图,在△ABC中,∠BAC=90°,AB=AC=a,AD是△ABC的高,求AD的长. 如图,在△ABC中,AB=AC,∠BAC=α,且60° 如图,在三角形ABC中,角BAC=90°,AB=AC=a,AD是三角形ABC的高,求AD的长. 如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于点D,CE⊥MN于点E,求证:∠BAC=90°. 如图在Rt△abc中,∠bac=90°,∠b=60°,如图,在Rt△abc中,∠bac=90°,∠b=60°,△ab‘c’可以由△abc绕点a顺时针旋转90°得到,连接cc‘,则∠cc'b'的度数为 如图,13.3-21,在△ABC中∠C90°,∠BAC=60°如图. 如图,在△ABC中,∠ABC=90°,CD⊥AB,AF平分∠BAC,求证:∠CFE=∠CEF 如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC 如图四面体S-ABC中,∠BAC=90°,∠SAB=∠SAC=60°四面体S-ABC中,∠BAC=90°,∠SAB=∠SAC=60°. (1)当SA=a时,求SA在平面ABC内的射影长, (2)求SA与平面ABC交角的大小过s作底面射影H,连接AH,则 AH为角BAC的平 如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC中点,求点O到△ABC的三个顶点A,B,C距离的关系 如图,在三菱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.1.证明:SO⊥平面ABC.2.求二面角A-SC-B的余弦值 如图,已知:在Rt△ABC中,∠C=90°,BD平分∠ABC且交AC于D.若∠BAC=90°,求证:AD=BD修改∠BAC=30° 如图 在△abc中 ∠bac=120° ad平分∠bac交bc于d 求证:1/ad=1/ab+1/ac 如图,有个RT△ABC,∠BAC=90°,AB=1,将它放在直角坐标系中,使斜边BC在X轴上,直角顶点A在反比例函数Y=根号如图,有个RT△ABC,∠BAC=90°,∠ABC=30°,AB=1,将它放在直角坐标系中,使斜边BC在X轴上,直角顶点A 【例10】 如图,在 三角形abc中,∠bac=60° ,ad是 ∠bac的平分线,且 ,求 的度数. 如图,在△ABC中,AB=AD=DC,∠BAD=32°,求∠BAC度数 如图,在三角形ABC中,AB=AC,角BAC=90°,BD垂直MN,CE垂直MN 如图在△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D