任何大于5的素数的四次方减一能被24整除x^4 – 1能被240整除
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 18:31:15
任何大于5的素数的四次方减一能被24整除x^4 – 1能被240整除
任何大于5的素数的四次方减一能被24整除
x^4 – 1能被240整除
任何大于5的素数的四次方减一能被24整除x^4 – 1能被240整除
证明如下:(题中出现的字母全是整数)
240=3*5*16
只要证明x^4-1是3,5,16的倍数即可.
因为x>5是素数,所以x是奇数并且不是3,5的倍数.
那么3除x的余数只能是1或者2,5除x的余数只能是1,2,3或者4.
x^4-1=(x^2-1)(x^2-4+5)
=(x-2)(x-1)(x+1)(x+2)+5(x-1)(x+1)
x-1,x+1当中必有一个是3的倍数,x-2,x-1,x+1,x+2中必有一个5的倍数,从上式可见
x^4-1是3和5的倍数.
再证它是16的倍数,因为x是奇数,设x=2k+1,则x^2=4k(k+1)+1,
k和k+1必有一个偶数,所以x^2=8m+1,x^4-1=64m^2+16m显然是16的倍数.
至此我们就得到x^4-1是3,5,16的倍数,也就证明了它是240的倍数.
任何大于等于5的质数的平方减1都是24的倍数
证明:
设p是大于等于5的质数,由于大于等于5的质数一定是奇数,故存在整数k,使得p=2k+1,p^2=(2k+1)^2=4k(k+1)+1.
相邻两个整数k,(k+1)必有一个偶数,故p^2-1=4k(k+1)必能被8整除,另一方面,
相邻三个整数(p-1),p,(p+1)必有一个能被3整除,由于p是质数不能被3...
全部展开
任何大于等于5的质数的平方减1都是24的倍数
证明:
设p是大于等于5的质数,由于大于等于5的质数一定是奇数,故存在整数k,使得p=2k+1,p^2=(2k+1)^2=4k(k+1)+1.
相邻两个整数k,(k+1)必有一个偶数,故p^2-1=4k(k+1)必能被8整除,另一方面,
相邻三个整数(p-1),p,(p+1)必有一个能被3整除,由于p是质数不能被3整除,故(p-1),(p+1)之一必有一个能被3整除,即p^2-1能被3整除,于是p^2-1能被24整除,即p的平方减1是24的倍数.
补充一点:p^4-1=(p^2+1)(p+1)(p-1)
24=2×2×2×3
收起
太简单了,笨你没上学嗬
到底是被24还是240整除啊?