在△ABC中,角A,B,C的对边分别为a,b,c,若a,b,c成等差数列,B=30°,△ABC面积3/2,求b的值由余弦定理得b²=a²+c²-2accosB∴b²=(a+c)²-2ac-2ac√3/2 这里不懂,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:27:51
在△ABC中,角A,B,C的对边分别为a,b,c,若a,b,c成等差数列,B=30°,△ABC面积3/2,求b的值由余弦定理得b²=a²+c²-2accosB∴b²=(a+c)²-2ac-2ac√3/2 这里不懂,
xUnE~kQ+[^{vg׻6y7^&R nD r&J#ĉ(K 7IUa_^bX1U1G:y!C ]U bti+T&L` VJeSW ˆYHQ/m"ՅJR.)]|uAMSI/HJx=lIk>^X#I9ÙmMEwے:AЙ!G9 (lЖPܱ~CiKLsnS)~9;T:Es0QAI]S "g_kGO,όI׹ P-o f!LYOs)6kTb&2 +@X ͟$GRRF)Q||f!J,BYޠJ/b3?bo%tIX|-wxb!L+tTqr# ₠2VYbIM׸bv,̘򛨜̦{'gojXnQ%фsǡHiHO0rӪ0Darem'}SC)) D?UcJ+'_j"

在△ABC中,角A,B,C的对边分别为a,b,c,若a,b,c成等差数列,B=30°,△ABC面积3/2,求b的值由余弦定理得b²=a²+c²-2accosB∴b²=(a+c)²-2ac-2ac√3/2 这里不懂,
在△ABC中,角A,B,C的对边分别为a,b,c,若a,b,c成等差数列,B=30°,△ABC面积3/2,求b的值
由余弦定理得b²=a²+c²-2accosB
∴b²=(a+c)²-2ac-2ac√3/2 这里不懂,

在△ABC中,角A,B,C的对边分别为a,b,c,若a,b,c成等差数列,B=30°,△ABC面积3/2,求b的值由余弦定理得b²=a²+c²-2accosB∴b²=(a+c)²-2ac-2ac√3/2 这里不懂,

(a+c)²-2ac=a²+c²由此可用到题设条件等差数列a+c=2b;
,s△ABC=1/2acsinB=3/2;
cosB=√3/2 ;

 由余弦定理得b²=a²+c²-2accosB
∴b²=(a+c)²-2ac-2ac√3/2 {因为(a+c)^2-2ac=a^2+b^2 且 2accosB=2ac√3/2}


(1)
A、B、C成等差数列,则
2B=A+C
A+B+C=3B=180°
B=60°
由正弦定理得
sinC=csinB/b=2×sin60°/2√3=2×(√3/2)/(2√3)=1/2
C=30°或C=150°(B+C>180°,舍去)
A=180°-B-C=180°-60°-30°=90°
三角形是以角A为直...

全部展开


(1)
A、B、C成等差数列,则
2B=A+C
A+B+C=3B=180°
B=60°
由正弦定理得
sinC=csinB/b=2×sin60°/2√3=2×(√3/2)/(2√3)=1/2
C=30°或C=150°(B+C>180°,舍去)
A=180°-B-C=180°-60°-30°=90°
三角形是以角A为直角的直角三角形。
S△ABC=(1/2)bc=(1/2)×2√3×2=2√3
(2)
sinA、sinB、sinC成等比数列,则
sin²B=sinAsinC
由正弦定理得
b²=ac
由余弦定理得
cosB=(a²+c²-b²)/(2ac)=cos60°=1/2
a²+c²-b²=ac
a²+c²-2ac=0
(a-c)²=0
a=c
A=C=(180°-B)/2=(180°-60°)/2=60°
A=B=C,三角形是等边三角形。

收起