已知数列{an},满足a(n+1)=an-2/2an-3,a1=1/2 计算a2,a3,a4a,猜想数列的通项an,并利用数学归纳法证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 18:49:48
已知数列{an},满足a(n+1)=an-2/2an-3,a1=1/2 计算a2,a3,a4a,猜想数列的通项an,并利用数学归纳法证明
xSn0~5 Mv0WKVGlM)hP *u-ksMIO}lҡ'E}]mկt O~(~J3W^ڼ;!FXKGʇlSR?#z{foٟRXD_KM}?vemctWQVӺ)m{A6V+qB[G09(aA`REB [hԁRBLVQBhîf=4%6)sU K ;evʿHILEE2TPRP34RB2 VM+s/{{n޿̓DeɾE·lE1[]g㊃e31s\} Lr0Lpa]֊Au摝BhgS)͊XW+v ĪP=_1[_tfY:i"a(z*IZd<֑^:ifϧb0x5;IN1ʿ| S, nސPes=KzY ^ ^x3i)C_J(

已知数列{an},满足a(n+1)=an-2/2an-3,a1=1/2 计算a2,a3,a4a,猜想数列的通项an,并利用数学归纳法证明
已知数列{an},满足a(n+1)=an-2/2an-3,a1=1/2 计算a2,a3,a4a,猜想数列的通项an,并利用数学归纳法证明

已知数列{an},满足a(n+1)=an-2/2an-3,a1=1/2 计算a2,a3,a4a,猜想数列的通项an,并利用数学归纳法证明
a2=(a1-2)/(2a1-3)=(1/2 -2)/(1-3)=3/4
a3=(a2 -2)/(2a2 -3)=(3/4 -2)/(3/2 -3)=5/6
a4=(a3-2)/(2a3-3)=(5/6 -2)/(5/3 -3)=7/8
变形:
a1=1/2=(2×1-1)/(2×1)
a2=3/4=(2×2-1)/(2×2)
a3=5/6=(2×3-1)/(2×3)
a4=7/8=(2×4-1)/(2×4)
…………
猜想:an=(2n-1)/(2n)
证:
n=1时,a1=1/2=(2×1-1)/(2×1),表达式成立.
假设当n=k(k∈N且k≥1)时,表达式成立,即ak=(2k -1)/(2k),则当n=k+1时,
a(k+1)=(ak -2)/(2ak -3)
=[(2k-1)/(2k) -2]/[2×(2k-1)/(2k)-3]
=[(2k-1)-2×(2k)]/[2×(2k-1)-3×(2k)]
=(2k-1-4k)/(4k-2-6k)
=(-2k-1)/(-2k-2)
=(2k+1)/(2k+2)
=[2(k+1)-1]/[2(k+1)]
表达式同样成立.
综上,得an=(2n -1)/(2n)

你把题打清楚一点好吗?很不好理解呀?

a1=1/2 a2=3/4 a3=5/6
an=(2n-1)/(2n) (n≥1 ,n∈N)
当n=k+1(k∈N)
an=(2k+1)/(2k+2)依然成立