证明三角形中,如果(sinA)^2+(sinB)^2+(sinC)^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 00:47:59
证明三角形中,如果(sinA)^2+(sinB)^2+(sinC)^2
xTmkP+0hM$MJSHUF]৺1M'0&Ld{n?e&_ZOy99'瞪YKr_,.g{ ߁ܔ5pFmqkfnY,CLi*Gi4)1$PYh,JERb *bq$$ٲʐt’JK*dIW,vׄRKi)с&RiEJҩj)*.hp~ƙ}#"r ~\@c~P3%ձ9\@ $B\XSw=#D0,pq}tS;j

证明三角形中,如果(sinA)^2+(sinB)^2+(sinC)^2
证明三角形中,如果(sinA)^2+(sinB)^2+(sinC)^2

证明三角形中,如果(sinA)^2+(sinB)^2+(sinC)^2
将〈右侧变形,变为(sinA)^2+(cosA)^2+(sinB)^2+(cosB)^2,
左右就可以把(sinA)^2,(sinB)^2两项消掉,
则为
(sinc)^2

参考以下图片

证明:
∵A+B+C=180°∴C=180°-(A+B),
∴(sinA)^2+(sinB)^2+(sinB)^2=3-[(cosA)^2+(cosB)^2+(cosC)^2].
又(cosA)^2+(cosB)^2+(cosC)^2=(1+cos2A)/2+(1+cos2B)/2+(cosC)^2
=[(cos2A+cos2B)/2]+(cosC)^2+1

全部展开

证明:
∵A+B+C=180°∴C=180°-(A+B),
∴(sinA)^2+(sinB)^2+(sinB)^2=3-[(cosA)^2+(cosB)^2+(cosC)^2].
又(cosA)^2+(cosB)^2+(cosC)^2=(1+cos2A)/2+(1+cos2B)/2+(cosC)^2
=[(cos2A+cos2B)/2]+(cosC)^2+1
=cos(A+B)*cos(A-B)+[cos(A+B)]^2+1
=cos(A+B)*[cos(A+B)+cos(A-B)]+1
=-2cosAcosBcosC+1.
∴(sinA)^2+(sinB)^2+(sinC)^2=3-(-2cosAcosBcosC+1)
=2cosAcosBcosC+2.
又(sinA)^2+(sinB)^2+(sinC)^2<2
∴2cosAcosBcosC+2<2
∴cosAcosBcosC<0
即A,B,C中有且仅有一个角为钝角
∴三角形ABC为钝角三角形

收起

∵A+B+C=180°∴C=180°-(A+B),
∴(sinA)^2+(sinB)^2+(sinB)^2=3-[(cosA)^2+(cosB)^2+(cosC)^2].
又(cosA)^2+(cosB)^2+(cosC)^2=(1+cos2A)/2+(1+cos2B)/2+(cosC)^2
=[(cos2A+cos2B)/2]+(cosC)^2+1
=cos(A+...

全部展开

∵A+B+C=180°∴C=180°-(A+B),
∴(sinA)^2+(sinB)^2+(sinB)^2=3-[(cosA)^2+(cosB)^2+(cosC)^2].
又(cosA)^2+(cosB)^2+(cosC)^2=(1+cos2A)/2+(1+cos2B)/2+(cosC)^2
=[(cos2A+cos2B)/2]+(cosC)^2+1
=cos(A+B)*cos(A-B)+[cos(A+B)]^2+1
=cos(A+B)*[cos(A+B)+cos(A-B)]+1
=-2cosAcosBcosC+1.
∴(sinA)^2+(sinB)^2+(sinC)^2=3-(-2cosAcosBcosC+1)
=2cosAcosBcosC+2.
又(sinA)^2+(sinB)^2+(sinC)^2<2
∴2cosAcosBcosC+2<2
∴cosAcosBcosC<0
∴三角形ABC为钝角三角形

收起