设函数y=f(x)的定义域为R,当X1,且对任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,数列{an}满足a1=f(0)且f(an+1)=1/f(-2-an),(n∈N*)(1)求{an}的通项;(2)是否存在正数K,使(1+1/a1)(1+1/a2)(1+1/a3).(1+1/an)≥K(根号2n+1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 11:31:02
设函数y=f(x)的定义域为R,当X1,且对任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,数列{an}满足a1=f(0)且f(an+1)=1/f(-2-an),(n∈N*)(1)求{an}的通项;(2)是否存在正数K,使(1+1/a1)(1+1/a2)(1+1/a3).(1+1/an)≥K(根号2n+1
xTN@~I8t;y8UBUTP{I@┆PeSKd# S^,A*CUپ?14$E?fA^e4*n@j5W ul.]($fog\vx,EY. IiӚŹC a``-Di!U@y)ѳ9FK]w^8:hIVILi3Sݫk8alGQ1M` `tMJ:O^k`ܭPWaZ;;9q[٠A3GeVT2_#7Ȣv3Fֈ'~.XnHs^vc"bl E$^mPZի<CJh1Ec<:= ,cy^%(V4RaS \τ:D#&C(=C1-p @.m|'.\?y0BV 60Y6A8Cp=iOCh4tW ^V2!)7N(x)M5N0(dғ 3{M05ЂvtʚN}E{([ݡ SPdDAhŃ{![@ Anׂ0AWYF ^&$WK.Jmѽ <&7S1d́zzϭ{e$W\gggY'oK 7m

设函数y=f(x)的定义域为R,当X1,且对任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,数列{an}满足a1=f(0)且f(an+1)=1/f(-2-an),(n∈N*)(1)求{an}的通项;(2)是否存在正数K,使(1+1/a1)(1+1/a2)(1+1/a3).(1+1/an)≥K(根号2n+1
设函数y=f(x)的定义域为R,当X1,且对任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,数列{an}满足a1=f(0)且f(an+1)=1/f(-2-an),(n∈N*)
(1)求{an}的通项;(2)是否存在正数K,使(1+1/a1)(1+1/a2)(1+1/a3).(1+1/an)≥K(根号2n+1)
(注:an+1是下标)
第一问我证得an=2n-1,

设函数y=f(x)的定义域为R,当X1,且对任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,数列{an}满足a1=f(0)且f(an+1)=1/f(-2-an),(n∈N*)(1)求{an}的通项;(2)是否存在正数K,使(1+1/a1)(1+1/a2)(1+1/a3).(1+1/an)≥K(根号2n+1
1
首先令x=y=0,得f(0)=0或1
显然f(x)不恒等于0,故f(0)=1,否则f(0)=0=f(x)f(-x)
可知f(x)恒等于0,矛盾
故f(x)f(-x)=f(0)=1
对任意的x11
故f(x1)>1/f(-x2)=f(x2)
故y=f(x)在R上是单调递减函数
f(an+1)=1/f(-2-an)
得f(0)=1=f(an+1)f(-2-an)=f(an+1-2-an)
由单调性可知an+1-2-an=0
即an+1=2+an
an是等差数列
a1=f(0)=1
d=2
an=2n-1
2
(1+1/a1)(1+1/a2)(1+1/a3).(1+1/an)≥K(根号2n+1)
1+1/an=1+1/2n-1=2n/(2n-1)
(1+1/a1)(1+1/a2)(1+1/a3).(1+1/an)
=2/1*4/3*6/5*8/7*...*2n/(2n-1)
设bn=(1+1/a1)(1+1/a2)(1+1/a3).(1+1/an)/(√2n+1)
b(n+1)/bn=[1+1/(an+1)]*(√2n+1)/(√2n+3)
=[(2n+2)/(2n+1)]*(√2n+1)/(√2n+3)
=(2n+2)/[(√2n+1)/(√2n+3)]
>1
所以:
{bn}为单调递增数列!
因此:
bn>=b1=(1+1/a1)/(√3)=2/√3=2√3/3

(1+1/a1)(1+1/a2)...(1+1/an)>=(2√3/3)√(2n+1)对于一切自然数成立,等号成立当且仅当n=1,
所以,K最大值为k=2√3/3.

哈哈,这道题我做过~~~
五年以前。。。。。

设函数f(x)的定义域为R,当x1且对任意实数x,y有f(x+y)=f(x)f(y)求f(0)判断并证明f(x)的单调性 设函数y=f(x)是定义域为R的奇函数,当x 设函数f(x)的定义域为R,对任意实数x,y满足f(a+b)=f(a)*f(b),设当x1,解不等式f(x+5)>1/f(x) 设函数f(x)的定义域为R,当x 已知定义域为R的函数y=f(x)满足f(-x)=-f(x+4)当x>2时,f(x)单调递增,若x1 已知定义域为R的函数y=f(x)满足f(-x)=-f(x+4)当x>2时,f(x)单调递增,若x1+x2 设奇函数y=f(x)定义域为R,f(1)=2,且对任意的x1、x2∈R,都有f(x1+x2)=f(x1)+f(x2),当x>0时,f(x)是增函数,则函数f=-f^2(x),在区间[-3,-2]上的最大值是? 已知定义域为R+的函数f(x),任意的xy属于R+,恒有f(xy)=f(x)+f(y)设f(x)有反函数,求证:f-1(x1+x2)=f-1(x1)f-1(x2) 设函数f(x)的定义域为R,对于任意实数x,y,总有f(x+y)=f(x)*f(y),当X>0,0 已知函数y=f(x) 的定义域为R,当x1 ,且对任意的实数x,y属于 R,等式f(x)f(y)=f(x+y) 成立. 设函数f(x)的定义域为R,且f(x)不等于0,当x>0,f(x)>1,对x,y属于R,有f(x+y)=f(x)f(y).设函数f(x)的定义域为R,且f(x)不等于0,当x>0时,f(x)>1,对x,y属于R,有f(x+y)=f(x)f(y).(1)求证:f9x)>0(2)解不等式 f(x)≤ 1/f(x+1 设函数f(x)的定义域为R,当x>0时,f(x)>1,且对任意xy属于R,均有f(x+y)=f(x)f(y),试判断函数f(x)单调性 设函数f(x)的定义域为R,当x>0时,f(x)>1.对任意的x,y∈R有f(x+y)=f(x)f(y)成立,解不等式:f(x) 设函数y=f(x)定义域为R,当x1,且对于任意的x,y∈R,有f(x+y)=f(x)·f(y)成立.数列{an}满足a1=f(0),且f(an+1)=1/f(-2-an) (n属于N)(1)求证:y=f(x)在R上是单调递减函数(2)求a2007的值定义在[-1,1]上的奇函数f(x 设函数fx=的定义域为R,对任意函数x,y都有f(x+y)=fx+fy,又当x>0时,fx= 设函数y=f(x)的定义域为R,当x1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y)成立.数列{an}满足a1=f(0),且f(an+1)=1/f(-2-an)(n∈N).(1)求证函数f(x)在R上是单调递减函数;(2)求a2007的值;(3)若不 设函数Y=(x)定义域为R,当X1,且对于任意的x,y属于R,有F(x+y)=f(X).f(y)成立.数列{an}满足a1=f(0),且f(an+1)=1/f(-2-an)(n属于正整数)(1)求f(o)的值;(2)证明:函数y=f(x)在R上是减函 要详解设函数f(x)的定义域为R,且满足下列两个条件:(1).存在x1不等于x2,使f(x1)不等于f(x2)(2).对任意x,y属于R,有f(x+y)=f(x)*f(y) 求:(1)f(0)的值 (2)求证:对任意x属于R,f(x)>0恒成立