对于函数f(x)=log1/2(x^2-2ax+3)( 1/2是对数的底)的值域为R,则实数a的取值范围∵f(x)的值域为R,∴u=g(x)的值域为(0,+∞),∴Δ=4a2-12≥0,即a≥根号3 或 a≤-根号3. ∴实数a的取值范围是(-∞,

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 19:46:01
对于函数f(x)=log1/2(x^2-2ax+3)( 1/2是对数的底)的值域为R,则实数a的取值范围∵f(x)的值域为R,∴u=g(x)的值域为(0,+∞),∴Δ=4a2-12≥0,即a≥根号3 或 a≤-根号3. ∴实数a的取值范围是(-∞,
xSn@#q-*TV&WƴNH.)h:8Y;EEׂ g{gUCcVc g+"GJX`2G2:fAbS XI"b䘵px[ Ioʭ|w!*Q u!%晌Q w=V*d8944$9Rri ͝oO,Y]^7з\#ea]`b%'OB˷3Y^Psc+Q}"m6 ǰ&.4qe+Ig9MWG8$d;s dQw f8&/-n/& Sw.&+{;l ɛOHJۂ%G2>"L3I v

对于函数f(x)=log1/2(x^2-2ax+3)( 1/2是对数的底)的值域为R,则实数a的取值范围∵f(x)的值域为R,∴u=g(x)的值域为(0,+∞),∴Δ=4a2-12≥0,即a≥根号3 或 a≤-根号3. ∴实数a的取值范围是(-∞,
对于函数f(x)=log1/2(x^2-2ax+3)( 1/2是对数的底)的值域为R,则实数a的取值范围
∵f(x)的值域为R,∴u=g(x)的值域为(0,+∞),
∴Δ=4a2-12≥0,即a≥根号3 或 a≤-根号3.
 
∴实数a的取值范围是(-∞,-根号3]∪[根号3,+∞).
为什么Δ=0可以取到?如果Δ=0,即y=x^2-2ax+3与x轴相切,则y=0,y=0,对数函数不是无意义吗?

对于函数f(x)=log1/2(x^2-2ax+3)( 1/2是对数的底)的值域为R,则实数a的取值范围∵f(x)的值域为R,∴u=g(x)的值域为(0,+∞),∴Δ=4a2-12≥0,即a≥根号3 或 a≤-根号3. ∴实数a的取值范围是(-∞,
Δ=0时,抛物线y=x^2-2ax+3与x轴相切,
切点为(a,0),
函数的定义域是使得y>0的x的集合,
因此函数定义域为{x|x≠a,x∈R}
这样x^2-2ax+3就可以取遍所有正实数了.
不用担心y=0的问题.
同样,Δ>0时,抛物线y=x^2-2ax+3与x轴交于
两点(x1,0),(x2,0),(x1