椭圆x²/a²+y²/b²=1﹙a>b>0﹚的两个焦点为F1﹙-c,0﹚,F2﹙c,0﹚,M是椭圆上的一点,满足向量F1M×向量F2M=0,求离心率的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 14:34:51
x){d9mjʆZOжwL|g^9';<ٱy˲M;Rq3rlg3C,yC/m~:a~7CӡL#_[g/tvӞ6yt"};l]_`g3Di'M>{ 薧{'l}>틽[^.m:p-s.YVb>U3;A Vfdgit2TQ;S`qfT_@r P6Y6 P:^
TbcF24i(6Y?a8ĹCM37/.H̳E, q
椭圆x²/a²+y²/b²=1﹙a>b>0﹚的两个焦点为F1﹙-c,0﹚,F2﹙c,0﹚,M是椭圆上的一点,满足向量F1M×向量F2M=0,求离心率的取值范围
椭圆x²/a²+y²/b²=1﹙a>b>0﹚的两个焦点为F1﹙-c,0﹚,F2﹙c,0﹚,
M是椭圆上的一点,满足向量F1M×向量F2M=0,求离心率的取值范围
椭圆x²/a²+y²/b²=1﹙a>b>0﹚的两个焦点为F1﹙-c,0﹚,F2﹙c,0﹚,M是椭圆上的一点,满足向量F1M×向量F2M=0,求离心率的取值范围
即角F1MF2是直角
因为当M是短轴顶点时,角F1MF2最大
设短轴顶点是B
则角F1BF2>90度
则角F1BO>45度
sin角F1BO=F1O/F1B
因为F1O=c,OB=b
所以F1B=√(c²+b²)=a
所以e=c/a=sin角F1BO
角F1BO>45度
所以√2/2