设椭圆x^2/16+y^2/b^2=1(4>b>0)的左,右焦点分别为F1,F2,点P(4,b)满足|PF2|=|F1F2|.(1)求椭圆的方程.(2)若直线PF2与圆(x+1)^2+(y^根号3)^2=16相交于M,N两点求|MN|

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 03:19:30
设椭圆x^2/16+y^2/b^2=1(4>b>0)的左,右焦点分别为F1,F2,点P(4,b)满足|PF2|=|F1F2|.(1)求椭圆的方程.(2)若直线PF2与圆(x+1)^2+(y^根号3)^2=16相交于M,N两点求|MN|
xSn@KHhLƸX/kUu[5RQDu(4lx(I"/+U~;q6, !3{}TNu_X?lTi`*Ynu0ݟ(ddEmd~hqɓv7&ᫀEyϏxIV'j+d/ Bvj5jk\dSGO8 ?{ 'Oa(+2*[qQRj ${.F0%cK ɽMljD_5$GM#Y%-jcg/<2,\hdOI:A, WR(/&0 M K FO#-]iܻ] ڡ0kOE~qk;k

设椭圆x^2/16+y^2/b^2=1(4>b>0)的左,右焦点分别为F1,F2,点P(4,b)满足|PF2|=|F1F2|.(1)求椭圆的方程.(2)若直线PF2与圆(x+1)^2+(y^根号3)^2=16相交于M,N两点求|MN|
设椭圆x^2/16+y^2/b^2=1(4>b>0)的左,右焦点分别为F1,F2,点P(4,b)满足|PF2|=|F1F2|.(1)求椭圆的方程.
(2)若直线PF2与圆(x+1)^2+(y^根号3)^2=16相交于M,N两点求|MN|

设椭圆x^2/16+y^2/b^2=1(4>b>0)的左,右焦点分别为F1,F2,点P(4,b)满足|PF2|=|F1F2|.(1)求椭圆的方程.(2)若直线PF2与圆(x+1)^2+(y^根号3)^2=16相交于M,N两点求|MN|
(1)|F1F2|=2c,|PF2|=√[(4-c)²+b²]=√[(4-c)²+a²-c²];
按题意 2c=√[(4-c)²+a²-c²],4c²=4²-8c+a²;
将 a=4 代入解得 c=2;b²=16-2²=12;故椭圆标准方程为 x²/16+y²/12=1;
(2)坐标F2(2,0)、P(4,2√3);PF2所在直线方程:y=√3*(x-2);
圆 (x+1)²+(y-√3)²=16 的半径 R=4,圆心坐标(-1,√3);
圆心到直线PF2的距离(弦心距)d=|y-√3(x-2)|/2=|√3-√3(-1-2)|/2=2√3;
∴ |MN|=2√(R²-d²)=2√[4²-(2√3²)]=4;

设椭圆x^2/16+y^2/4=1,则椭圆的焦距|F1F2|等于 设F1,F2分别为椭圆E:x^2+y^2/b^2=1(0 设F1,F2分别是椭圆x^2+y^2/b^2=1(0 设F1,F2分别为椭圆E:x^2+y^2/b^2=1(0 设 F1 F2,分别是椭圆E:x^2 +y^2/b^2 =1(0 设F1,F2分别是椭圆x^2+y^2/b^2=1(0 设椭圆的方程为x^2/16 + y^2/12 =1,则该椭圆的离心率为 设椭圆的方程为x^2/16+y^2/12=1,则该椭圆的离心率为 设A,B分别为椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右顶点,(1,2/3)为椭圆上一点椭圆长半轴长等于焦距 求椭圆的方程 有关椭圆的数学题设椭圆x^2/a^2+y^2/b^2=1,a=2b,它与直线y=-x-1相交于A、B 两点,若OA⊥OB,求此椭圆方程 设椭圆C:x^2/a^2+y^2/b^2=1恒过定点(1,2),则椭圆的中心到准线的距离的最小值 设椭圆X^2/25+Y^2/16=1与X轴、Y轴的正半轴分别相交于A、B两点,椭圆的左焦点为F1,则三角形ABF1的面积为?要有详细解题过程~! 数学题:椭圆 抛物线已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一条准线方程x=9/根号5,且该椭圆上的点到右焦点的最近距离为3-根号5(1)求椭圆方程(2)设F1,F2是椭圆左右两焦点,A是椭圆与y轴负半轴的 设A,B分别为椭圆x^2/a^2+y^2/b^2=1的左右顶点,设A,B分别为椭圆x^2/a^2+y^2/b^2=1的左右顶点(a>b>0),(1,3/2)为椭圆上一点,椭圆长半轴的长等于焦距(1)求椭圆的方程(2)设P(4,x)(x≠0),若直线AP,BP分别与 设F1,F2是椭圆x^/a^2+y^/b^2=1的两个焦点,P是椭圆上任意一点,求PF1*PF2的最大值和最小值设F1,F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,P是椭圆上任意一点,求PF1*PF2的最大值和最小值 一道椭圆的数学题.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若三角形ABF2是等腰直角三角形,则这个椭圆的离心率是?设椭圆方程为:x^2/a^2+y^2/b^2=1,a>b>0,则A、B坐 椭圆B与椭圆A有相同焦点,已知一点,求椭圆B方程椭圆A:x^2/9+y^2/4=1(2,3)在椭圆B上 设x^2/9+y^2/4=λ.求具体解法.上课打盹,是否有“离心率相同”一说,忘了! 关于高中椭圆的切线问题设椭圆方程为X^2/a^2 + Y^2/b^2 =1,试求过椭圆上一点P(x0,y0)的切线.x0x/a^2 + y0y/b^2 = 1