已知抛物线y=x²+kx+1与x轴交于不同两点A和B,顶点为C,且∠ACB=90°,求k的值.试求如何平移此抛物线是∠ACB=60°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:50:31
已知抛物线y=x²+kx+1与x轴交于不同两点A和B,顶点为C,且∠ACB=90°,求k的值.试求如何平移此抛物线是∠ACB=60°
xUn@HH(8v"vF@q$=^vvn[NQ*%r(e!;WRS*ː).Y|RQЃc@6{5ZJ9H8}Qi؉R$-?ˣ񐜬΢g/ /X6+E{ \qZ2m&<IvjT)IV[?,݆kRUk`aehR:dֶPyC D<ȔU./| ╠|TP80=VboUR8BX TN QFLOEI;GyeQ7C\[Í}=Kϻ9N( Yq0YK{ش%\Ơ0{_8 <: +,z_@D9'VCkpjC w#鍸c?Ŗ3( v"2 }g :~ ތVD# #_ ne9y:9I׏E{-@uNuϚv${ 2"xT;OE샼ӸО'ϱ_umr}Ck

已知抛物线y=x²+kx+1与x轴交于不同两点A和B,顶点为C,且∠ACB=90°,求k的值.试求如何平移此抛物线是∠ACB=60°
已知抛物线y=x²+kx+1与x轴交于不同两点A和B,顶点为C,且∠ACB=90°,求k的值.试求如何平移此抛物线
是∠ACB=60°

已知抛物线y=x²+kx+1与x轴交于不同两点A和B,顶点为C,且∠ACB=90°,求k的值.试求如何平移此抛物线是∠ACB=60°
(x1,0) B(x2,0)
y=x²+kx+1=(x+k/2)²-k²/4+1
根据韦达定理x1+x2=-k x1x2=1
|AB|²=(x1+x2)²-4x1x2=k²-4>0
C点坐标就是(-k/2,-k²/4+1)
∠ACB=60°
过C点作x轴的垂线交X轴为D,
CA=CB=AB DA=DB ∠DCB=60°/2=30°
|CD|=cos30°|AB|
(k²/4-1)^2=3/4*(k²-4)
k²=16或k²=4(不成立)
k=4或k=-4

设抛物线y=x²+kx+1与x轴交于不同两点A(x1,0)和B(x2,0),则
x1+x2=-k,x1x2=1,
x1-x2=√(k^2-4)>0.
(k+2x1)(k+2x2)=k^2+2k(x1+x2)+4x1x2=k^2-2k^2+4=4-k^2.
顶点为C(-k/2,1-k^2/4),∠ACB=60°,
由对称性知AC=BC,△ABC是等边...

全部展开

设抛物线y=x²+kx+1与x轴交于不同两点A(x1,0)和B(x2,0),则
x1+x2=-k,x1x2=1,
x1-x2=√(k^2-4)>0.
(k+2x1)(k+2x2)=k^2+2k(x1+x2)+4x1x2=k^2-2k^2+4=4-k^2.
顶点为C(-k/2,1-k^2/4),∠ACB=60°,
由对称性知AC=BC,△ABC是等边三角形,
∴|1-k^2/4|=(√3/2)√(k^2-4),
约去√(k^2-4),乘以4,得√(k^2-4)=2√3,
平方得k^2-4=12,k^2=16,
∴k=土4.

收起

A(x1,0) B(x2,0)
y=x²+kx+1=(x+k/2)²-k²/4+1
根据韦达定理x1+x2=-k x1x2=1
C点坐标就是(-k/2,-k²/4+1)
有|AB|²=(x1-x2)²=(x1+x2)²-4x1x2=k²-4
∠ACB=60°
作...

全部展开

A(x1,0) B(x2,0)
y=x²+kx+1=(x+k/2)²-k²/4+1
根据韦达定理x1+x2=-k x1x2=1
C点坐标就是(-k/2,-k²/4+1)
有|AB|²=(x1-x2)²=(x1+x2)²-4x1x2=k²-4
∠ACB=60°
作CE⊥AB于点E
60度的直角三角形中有
CE=√3*AB/2 |CE|²=3/4|AB|²
结合图像CE是C点纵坐标的相反数
上面算出来C的纵坐标是-k²/4+1
|AB|²=k²-4
那么(-k²/4+1)²=3/4(k²-4)
解之,得k²=16
k=±4

收起