如图 抛物线y=-x2+2x+3与x轴交于A,B 两点,与 y轴交于点C,对称轴与抛物线交于点P,与直线BC 交于点M,连接PB.(1)抛物线上是否存在异于点P 的一点Q,使△QMB 与△PMB 的面积相等?若存在,求出点Q 的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:50:07
如图 抛物线y=-x2+2x+3与x轴交于A,B 两点,与 y轴交于点C,对称轴与抛物线交于点P,与直线BC 交于点M,连接PB.(1)抛物线上是否存在异于点P 的一点Q,使△QMB 与△PMB 的面积相等?若存在,求出点Q 的
xYSFhIG%KƢëgN&ӑ@[Zҩ!1 1L@is690؁'BJl&tCx߽߹?E9RkΤ&8bk깹bnՎ iά6s> Yl>z͗㳔`Ag{'v/kUל0/Y kd>y@~|@S,xެW`9,vv?Pj ;յRx#=&B֧-HR/`' ^ ֭{% 0W\{m^{n-ZZW׃a0HZz{vx2^Ys-e3Ź8eqJK ڡϾCėٳJR122:>r왉H^-~)-gG+C1Y>,M:!NJz%JQ5Jx<.Q Bb(Q\,X E-cJFh!YґZ( %8R:-jl)&HU.&A*d"KϼpS*F??(~=OqN! C' ${EC,oHPCeAҼ5S8Vփf}ZVlllȀhX`_R{ꮹY=H¡oVf3YO~<8+p& {B'ýJqsXXM *jƸ.6qtǘEfp9&N2$/b}E '+Ϭgw*B`# ֵipXvD5BИ>?at%E.!te\H`ap]X[ xM zdžHK=z]⽔X11 &ݼNP|bt“ M, d^K VIϳWhۃ~cqRlCM٧{KV-CϪ!d3;'5#t)R'5Yvc=x# %hUnhn$AQWH}ci80FvZ?'EY;ˑȾn!= HmnF9tQZמ,^I֠Şk0X ^AS3 Eڟ@`BL.kDHu{{3vƸYW'G%2i ~`tWz~7[A@S0٨2\n|o37Poʹq 9 غI609xgB>/]Ck,CuJSd8DKahwGOz\ s`U4yHVV-rJ5Qa`T[}*ӗKuzzLΗLJBJdD>/p<^.GUSȥ$V˅dyO_oӗq˫eE-E5;em?}:?1~vk,$,k˗?C

如图 抛物线y=-x2+2x+3与x轴交于A,B 两点,与 y轴交于点C,对称轴与抛物线交于点P,与直线BC 交于点M,连接PB.(1)抛物线上是否存在异于点P 的一点Q,使△QMB 与△PMB 的面积相等?若存在,求出点Q 的

如图 抛物线y=-x2+2x+3与x轴交于A,B 两点,与 y轴交于点C,对称轴与抛物线交于点P,与直线BC 交于点M,连接PB.
(1)抛物线上是否存在异于点P 的一点Q,使△QMB 与△PMB 的面积相等?若存在,求出点Q 的坐标;若不存在,请说明理由.
(2)在第一象限对称轴右侧的抛物线上是否存在一点R,使△RPM 与△RMB 的面积相等?若存在,求出点R 的坐标;

若不存在,请说明理由.

如图 抛物线y=-x2+2x+3与x轴交于A,B 两点,与 y轴交于点C,对称轴与抛物线交于点P,与直线BC 交于点M,连接PB.(1)抛物线上是否存在异于点P 的一点Q,使△QMB 与△PMB 的面积相等?若存在,求出点Q 的
(1).y=-x²+2x+3=-(x²-2x)+3=-[(x-1)²-1]+3=-(x-1)²+4
对称轴:x=1;顶点P(1,4);C(0,3);A(-1,0);B(3,0);
BC所在直线的方程为y=-x+3;令x=1,得M点的坐标为(1,2);
那么S△PMB=(1/2)×∣PM∣×∣XB-1∣=(1/2)×(4-2)(3-1)=2;
设Q点的坐标为(m,-m²+2m+3);
则△QMB的面积S:
.∣m -m²+2m+3 1 ∣
S=(1/2)∣1 2 1 ∣=(1/2)[2m+2(-m²+2m+3)-6]=(1/2)(-2m²+6m)=2
.∣3 0 1 ∣
即有-2m²+6m-4=-2(m²-3m+2)=-2(m-1)(m-2)=0,故得m=2;
于是-m²+2m+3 =-4+4+3=3;即Q点的坐标为(2,3).
(2).设R的坐标为(x,-x²+2x+3),那么
.∣x -x²+2x+3 1 ∣
S△RPM=(1/2)∣1 4 1 ∣=(1/2)(2x-2)=x-1
.∣1 2 1 ∣
.∣x -x²+2x+3 1∣
S△RMB=(1/2)∣1 2 1∣=(1/2)[2x+2( -x²+2x+3)-6]=-x²+3x
.∣3 0 1∣
由x-1=-x²+3x,得x²-2x-1=0,解得x=1+√2,y=-(1+√2)²+2(1+√2)+3=2,即R点的坐标为(1+√2,2).


y=-x²+2x+3=-(x-1)²+4
点P坐标(1,4)
令x=0,解得y=3
点C坐标(0,3)
令y=0
-x²+2x+3=0
x²-2x-3=0
(x-3)(x+1)=0
x=3或x=-1
点A坐标(-1,0),点B坐标(3,0)
直线BC方程:y-0=[(0...

全部展开


y=-x²+2x+3=-(x-1)²+4
点P坐标(1,4)
令x=0,解得y=3
点C坐标(0,3)
令y=0
-x²+2x+3=0
x²-2x-3=0
(x-3)(x+1)=0
x=3或x=-1
点A坐标(-1,0),点B坐标(3,0)
直线BC方程:y-0=[(0-3)/(3-0)](x-3)
整理,得x+y-3=0
令x=1,解得y=2
点M坐标(1,2)
1.
假设点Q存在,设点Q坐标(x,-x²+2x+3) (点Q异于点P,x≠1)
△QMB与△PMB有公共边MB,两三角形面积相等,MB边上高相等
点Q与点P到直线BC距离相等
由点到直线距离公式得
|x+(-x²+2x+3)-3|/√(1²+1²)=|1+4-3|/√(1²+1²)
|x²-3x|=2
x²-3x=2或x²-3x=-2
x²-3x=2 (x- 3/2)²=17/4
x=(3+√17)/2或x=(3-√17/2)
x=(3+√17)/2时,y=-x²+2x+3=(√17-1)/2
x=(3-√17)/2时,y==-x²+2x+3=-(√17+1)/2
x²-3x=-2 x²-3x+2=0
(x-1)(x-2)=0
x=1(舍去)或x=2
y=-x²+2x+3=-4+4+3=3
综上,得满足题意的Q点存在,共有三个点满足题意,坐标分别为:
( (3+√17)/2,(√17-1)/2 ),( (3-√17)/2,-(√17+1)/2 ),(2,3)
2.
假设点R存在,设点R坐标(x,-x²+2x+3)
点R在第一象限,x>0 -x²+2x+3>0
x²-2x-3<0
(x-3)(x+1)<0
-10,因此0点R在对称轴右侧,x>1
综上,得1设直线PM交x轴于D(1,0)
PM=MD=2,点M为线段PD中点。
S△PMB=S△MDB
△MDB与△RMB有公共边MB,S△RMB=S△RPM=S△MDB
点R与点D到直线MB距离相等
由点到直线距离公式得
|x+(-x²+2x+3)-3|/√(1²+1²)=|1+0-3|/√(1²+1²)
|x²-3x|=2
由(1)过程得
x=(3+√17)/2(>3,舍去)或x=(3-√17)/2 (<1,舍去)或x=2
y=3
综上,得满足题意的点R存在,仅有一个点满足题意,坐标为(2,3)

收起

通过抛物线可以解得A(-1,0),B(3,0),P(1,4)直线BC.Y=3-X,M(1,2),C(0,3)为使△QMB 与△PMB 的面积相等,即Q点到PM的距离与B点到PM的距离相等,从而得到Q的X坐标为-1,从而知Q(-1,0)
使△RPM 与△RMB 的面积相等,已知PM长为1,MB为2根号2,设R(a,b)则1*(a-1)的绝对值=2根号2*(a+b-3)的绝对值/根号2,以为R...

全部展开

通过抛物线可以解得A(-1,0),B(3,0),P(1,4)直线BC.Y=3-X,M(1,2),C(0,3)为使△QMB 与△PMB 的面积相等,即Q点到PM的距离与B点到PM的距离相等,从而得到Q的X坐标为-1,从而知Q(-1,0)
使△RPM 与△RMB 的面积相等,已知PM长为1,MB为2根号2,设R(a,b)则1*(a-1)的绝对值=2根号2*(a+b-3)的绝对值/根号2,以为R点在第一象限对称轴右侧的抛物线上,所以a-1,a+b-1必定大于0.再结合b=-a2+2a+3可以解得a,b

收起

 第二题相同的思路

如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D是该抛物线的顶点. 如图,在如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D是该抛物线 如图,抛物线y=x2-2x-3与x轴交A.B两点,与y轴交于C点,在抛物线上找一点P,使S三角形ABC=S三角形BCP,求P坐 如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D是该抛物线的顶点.如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是该抛物线的顶点 如图,抛物线y=x2-2x-3与x轴交于A,B两点,与y轴交于点C,点D是抛物线的顶点(1)请求出A、B、D的坐标(2)如图如图,抛物线y=x2-2x-3与x轴交于A,B两点,与y轴交于点C,点D是抛物线的顶点(1)请求出A、B、D的 如图,已知抛物线y=x2-ax +a +2与x轴交于A,B两点,与y轴交于点D(0,8),直线DC∥x轴,交抛物线与另一点C.动点 P如图,已知抛物线y=x2-ax +a +2与x轴交于A、B两点,与y轴交于点D(0,8),直线DC∥x轴,交抛物线与 如图 抛物线y=x2+bx+k与x轴交于A、B两点,与y轴交于点c(0,-3)如图 抛物线y=x2+bx+k与x轴交于A、B两点,与y轴交于点c(0,-3)(1)k=----,点A的坐标为-------,点B坐标为-----(2)设抛物线y=x2+bx+k的顶点为M,求四 已知抛物线y=x2-(k+1)x+k 1)试求k为何值时,抛物线与x轴只有一个公共点; 2)如图,若抛物线与X轴交于A、B 如图,在平面直角坐标系中,抛物线y=x2-2x-3与x轴交于A,B,与y轴交于点C.求三角形ABC的面积 如图,在平面直角坐标系中,抛物线y=—x2+2x+3与x轴交于a,b两点,与y轴交于点c 如图,抛物线y=-x2+bx+c与X轴交于A(1,0)、B(-3,0)两点(1)求该抛物线的解析式(2)设(1)中的抛物线交y轴于如图,抛物线y=-x2+bx+c与X轴交于A(1,0)、B(-3,0)两点(1)求该抛物线的解析式(2)设(1)中的抛 如图,抛物线y=-x2+bx+c与X轴交于A(1,0)、B(-3,0)两点 急、、如图,抛物线y=-x2+bx+c与X轴交于A(1,0)、B(-3,0)两点(1)求该抛物线的解析式(2)设(1)中的抛物线交y轴于点C,在该抛物线的对称轴上是否存 如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与如图,抛物线 y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B 两点的坐标及直 如图,抛物线y=-x²+bx+c与x轴交于A(1,0)B(-3,0)两点如图,抛物线y=-x2+bx+c与X轴交于A(1,0)、B(-3,0)两点(1)求该抛物线的解析式(2)设(1)中的抛物线交y轴于点C,在该抛物线的对称轴上是否存在点Q, 抛物线与x轴交于A(x1,0)B(x2,0)且x1小于x2,与y轴交于C(0,-4),其中x1x2是方程x^2-4如图 抛物线与x轴交于A(x1,0) B(x2,0)两点,且x1>x2,与Y轴交于C(0,4),其中x1 x2是方程x的平方—2x—8=0 2010-12-31 22:09 提问者: 如图,抛物线y=x²-2x-3与x轴交于A、B两点,与y轴交于点C,平移直线y=-x交抛物线于M、N,两点sorry....我没有图.... 如图 已知抛物线y=x2+bx+c与x轴交与A.B俩点【A在B点左侧】与y轴交与点C【0,-3】如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线 如图,抛物线y=-x2+2x+c与x轴交于A,B两点,它的 对称轴与x轴交于点N,过顶点M作M E如图,抛物线y=-x2+2x+c与x轴交于A,B两点,它的 对称轴与x轴交于点N,过顶点M作M E⊥y轴于点E,连结BE交MN于点F, 已知点A的 如图,抛物线y=x2-2x-3与x轴交A、B两点如图,抛物线y=x^2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为21)P是线段AC上的一个动点,过P点作y轴的平行线交抛物