【概率论】X1,X2,X3...X9来自正态总体x的随机样本X1,X2,X3...X9来自正态总体x的随机样本Y1=1/6(X1+...+X6) Y2=1/3(X7+X8+X9)S^2=1/2∑(Xi-Y2)^2 (i=1 到9)Z=[√2*(Y1-Y2)]/s证明z服从自由度为2的t分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 07:20:25
【概率论】X1,X2,X3...X9来自正态总体x的随机样本X1,X2,X3...X9来自正态总体x的随机样本Y1=1/6(X1+...+X6) Y2=1/3(X7+X8+X9)S^2=1/2∑(Xi-Y2)^2 (i=1 到9)Z=[√2*(Y1-Y2)]/s证明z服从自由度为2的t分布
xRn@YzlL@XjwDe1bQ9j5nJ*!HAUӴ?z&*Ljn,ٌ4g=sǬO~2h?רQl&E9;bA aO£u6<=묊/z_Ew/+Fs 5ThPi $мJ *-V wmzBfA"H "\rM Ѱ!6Ǣ 'hZ26Je`>$1=:T0ǔ+ӃjHw!W!v8_R/Kw:om5P=Ў,p3;ov7%(TtZ< cOT=Dɟ`A^LBL cn'WkKlϥ$V0MrGsr{ ĤF,MnIby aAYDN8nBpgY~_LJ+`V$d$м;'gS

【概率论】X1,X2,X3...X9来自正态总体x的随机样本X1,X2,X3...X9来自正态总体x的随机样本Y1=1/6(X1+...+X6) Y2=1/3(X7+X8+X9)S^2=1/2∑(Xi-Y2)^2 (i=1 到9)Z=[√2*(Y1-Y2)]/s证明z服从自由度为2的t分布
【概率论】X1,X2,X3...X9来自正态总体x的随机样本
X1,X2,X3...X9来自正态总体x的随机样本
Y1=1/6(X1+...+X6)
Y2=1/3(X7+X8+X9)
S^2=1/2∑(Xi-Y2)^2 (i=1 到9)
Z=[√2*(Y1-Y2)]/s证明z服从自由度为2的t分布

【概率论】X1,X2,X3...X9来自正态总体x的随机样本X1,X2,X3...X9来自正态总体x的随机样本Y1=1/6(X1+...+X6) Y2=1/3(X7+X8+X9)S^2=1/2∑(Xi-Y2)^2 (i=1 到9)Z=[√2*(Y1-Y2)]/s证明z服从自由度为2的t分布
这个i是不是7到9啊?
因为X1到X9~N(0,1)
所以Y1=1/6(X1+...+X6)~N(0,1/6)这个知道吧就是1/n∑xi~N(μ,σ^2/n)
Y2~N(0,1/3)推出√2*(Y1-Y2)]~N(0,(√2)^2*(1/3+1/6))~N(0,1)这是分子
对于分母有公式2S^2=∑(Xi-Y2)^2(i=7到9)~χ^2(2)这是卡方分布
所以满足t分布的形式

x1 x2~N(0,8) x3 x4 x5~N(0,12) x6 x7 x8 x9~N(0,16) 由于x^2分布定义为标准正态分布的平方和,因此a(x1 x2), b(x3 x

【概率论】X1,X2,X3...X9来自正态总体x的随机样本X1,X2,X3...X9来自正态总体x的随机样本Y1=1/6(X1+...+X6) Y2=1/3(X7+X8+X9)S^2=1/2∑(Xi-Y2)^2 (i=1 到9)Z=[√2*(Y1-Y2)]/s证明z服从自由度为2的t分布 设x1,x2,x3,...,x9均为正整数,且x1 设x1,x2,x3,...x9均为设x1,x2,x3,...,x9均为正整数,且x1 设x1,x2,x3,…x9均为正整数,且x1<x2<x3<…<x9,x1+x2+x3+…+x9=220,求x9- x1的最小值设x1,x2,x3,…x9均为正整数,且x1<x2<x3<…<x9,x1+x2+x3+…+x9=220,试问当x1+x2+x3+…+x5值最大时,求x9- x1的最小值 设x1,x2,x3,…x9均为正整数,且x1<x2<x3<…<x9,x1+x2+x3+…+x9=220,求x9- x1的最小值 设x1,x2,x3,…x9均为正整数,且x1<x2<x3<…<x9,x1+x2+x3+…+x9=220,...设x1,x2,x3,…x9均为正整数,且x1<x2<x3<…<x9,x1+x2+x3+…+x9=220,试问当x1+x2+x3+…+x5值最大时,求x9- x1的最小值 概率论中p(x1,x2,x3……, 设x1,x2,x3…,x9均为正整数且x1 设x1,x2,x3…,x9均为正整数且x1 已知9个不同的数x1 x2 x3 ..x9是正整数1.2..9任意一个排列,求|.||x1-x2|-x3|.|-x9|的最大值 概率论与数理统计:设总体X~N(0,0.25),x1,x2,x3...xn为来自总体的一个样本,见下图;请给出计算过程, 概率及统计高手进,设x1 x2 .x9 来自正态总体N(0,4)的简单随机样本,求系数a,b,c使设x1 x2 .x9 来自正态总体N(0,4)的简单随机样本,求系数a,b,c使Q=a(x1+x2)^2+b(X3+X4+X5)^2+c(X6+X7+X8+X9)^2服从x^2的分布,并 求解最佳方案X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 概率论与数理统计--ka分布设样本X1,X2,…,X6来自总体N(0,1),Y=(X1+X2+X3)^2+(X4+X5+X6)^2,试确定常数C使CY服从ka分布 设(X1,X2,X3.X9)是来自正太总体X的简单随机样本,且 Y1 = 1/6 (X1+X2+.X6) Y2=1/3(X7+X8+X9) S²=1/2 ∑''9 i=7'' (Xi - Y2)² Z=√2 (Y1 - Y2)/S 证明:统计量Z 服从自由度为2的t分布 x1,x2,.x9是正整数,且x1 代数最值的竞赛题20分1.已知设x1,x2,x3.xn均为连续正整数,且x1<x2<.<xn,x1+x2+x3...+xn=2005,则xn的最大最小直分分别是2.设x1,x2,x3.x9均为正整数,且x1<x2<.<x9,x1+x2+x3+.+x9=220,当x1+x2+x3+x4+x5的直最大时 设(X1,X2,X3.X9)是来自正太总体X的简单随机样本,且 Y1 = 1/6 (X1+X2+.X6) Y2=1/3(X7+X8+X9) S²=1/2 ∑''9 i=7'' (Xi - Y2)² Z=√2 (Y1 - Y2)/S 证明:统计量Z 服从自由度为2的t分布因为X1到X9~N(μ,σ^2)所以Y1=1/6(