已知函数f(x)=ln(1+x)-x数列{an}满足a1=1/2,ln2+ln a(n+1)=a(n+1)an+f(a(n+1)an),求证ln(1+x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 13:10:52
xRJ@LHdk7>ćBIY,ig2䩿n0sf̰ZIT
"! p{6aC:F64Ȋ-xalԤ+k?FMM_O
Gq_a06T iT?i* / 5pQǧ+xt' ۽|]-xtģ^+${3,y^`G>Tl)\y 䠐ij#%U@ݣea)&~!;+M0ָӋr +;
a3vH
RAJW}+3".[MX;LJ
已知函数f(x)=ln(1+x)-x数列{an}满足a1=1/2,ln2+ln a(n+1)=a(n+1)an+f(a(n+1)an),求证ln(1+x)
已知函数f(x)=ln(1+x)-x数列{an}满足a1=1/2,ln2+ln a(n+1)=a(n+1)an+f(a(n+1)an),求证ln(1+x)
已知函数f(x)=ln(1+x)-x数列{an}满足a1=1/2,ln2+ln a(n+1)=a(n+1)an+f(a(n+1)an),求证ln(1+x)
证明:1)若给定定义域x>=0,对f(x)=ln(x+1)-x,求导得f'(x)=1/(x+1)-1=-x/(x+1)=0.于是得f(x)在x>0上单调递减,又f(x)可在x=0处连续,得f(x)2且k为N+)假设命题成立,则有ak=k/(k+1).iii)那么n=k+1时,有a(k+1)=1/(2-ak)=1/[2-k/(k+1)]=(k+1)/(k+2),故n=k+1时也成立,于是对任意n(为N+)都有an=n/(n+1).3)由于ln(1+x)0).取1/(n+1)(>0)替换x得ln[1+1/(n+1)]=ln[(n+2)/(n+1)]
已知函数f(x)=-x'2+ln(1+2x)求f(x)的最大值
已知函数f(x)=ln(1+x)-x,求f(x)最大值
已知函数f(x)=ln(1+x)-[x(1+入x)]/1+x, 求f(x)的导函数.
已知函数f(x)=ln(1+x)-x数列{an}满足a1=1/2,ln2+ln a(n+1)=a(n+1)an+f(a(n+1)an),求证ln(1+x)
已知函数f(x)=[ln(1+x)]^2-x^2/(1+x),求函数f(x)的单调区间
已知函数f(x)=ln(1+x^2)+ax,讨论f(x)的单调性
已知函数f(x)=1+ln(x+1)/x,求函数定义域
已知函数f(x)=ln(1+x)/x,当x>-1且x=0时,不等式f(x)
已知函数f(x)=ln(1+x)/x(1)当X>0时,证明f(x)>2/(X+2)
已知函数f(x)=e^x-ln(x+1).(1)求函数f(x)的最小值;(2)已知0
已知函数f(x)=e^x-ln(x+1)①求函数f(x)的最小值②已知0
已知函数f(x)=ln(1 x)/x (1)证明y=f(x)在(0,∞)上为减函数(2)设数列h(x)=x*f(x)-x-ax∧3在(0,2)上有极值,求a的取值范围.f(x)=ln(1+x)/x
已知函数f(x)=1/4x²-ln(1-x),求函数f(x)的单调递增区间已知函数f(x)=1/4 x²-ln(1-x),求函数f(x)的单调递增区间
已知函数f(x)=ln(1+x)-x,数列{an}满足 a1=1/2 ,ln2+lna(n+1)=a(n+1)+f(a(n+1)an)(1)求证 ln(1+x)
已知函数f(x)=e^x-ln(x+1)(1)求函数f(x)的最小值
已知函数f(x)=ln x +(1/x) 求函数f(x)的最小值
已知函数f(x)=ln(1+x)-x/(1+x),求f(x)的极小值
已知函数f(x)=ln(1+x)-x+k/2x^2 求f(x)的单调性