△ABC中,∠ABC=100°,∠C的平分线交AB于E,在AC边上取D,使∠CBD=20°,连接DE求∠CED的度数.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:56:11
xj@_rbveY*ހ%-bBٕXmK?JhKJBM)Д'>d
ݕMseٙ[Ƈ
J8V s!kr&wd&_f|oXtRz3Ŧ83俶Ml%\TlK~y`c>Q ˥hN>eVaFFenȯ;G
5 V G&^e.j@fA_W}& "yTQU!!MAm)ӫWyr^,jUhw,!dj{JiURj4%k{[f4ǻg|zoJڑH[lgǷ`/;ݞ_)9
w/Mb6s{Hb},r^\ MsAǼIge1/ֿ
hpT1;CD"T+։N?_t̆GT$6KEǖMJI*eQH7}
△ABC中,∠ABC=100°,∠C的平分线交AB于E,在AC边上取D,使∠CBD=20°,连接DE求∠CED的度数.
△ABC中,∠ABC=100°,∠C的平分线交AB于E,在AC边上取D,使∠CBD=20°,连接DE求∠CED的度数.
△ABC中,∠ABC=100°,∠C的平分线交AB于E,在AC边上取D,使∠CBD=20°,连接DE求∠CED的度数.
过E分别作EM⊥BC于M,EH⊥BD于H,EN⊥AC于N,(图中EB是不垂直于BC的,∠B=100°)
∵∠EBM=180°-100°=80°,∠ENH=100°-20°=80°,
∴△EMB≌△EHB,
∴EM=EH,
又∵EM=EN,
∴EH=EN,
∴∠1=∠2,
∵∠3=∠4,∠DBC=20°,
∴2∠2=2∠3+20°,∠2=∠3+10°,
∴∠CED=10°.
故答案为:10°.
(∠1=EDB ∠2=NDE ∠3=ACE ∠4=ECB)
如图,在△ABC中,外角∠CBD=90°,∠ABC=2∠C,求∠ABC和∠C的度数.
在△ABC中,∠A-∠B=∠C,判断△ABC的形状
已知△ABC中,∠B=∠C,又△ABC≌△DEF,若∠A+∠F=100°,求∠C的度数
在RT△ABC中,∠C=90°,AB=15,△ABC的周长为36,求△ABC的面积
在Rt△ABC中,∠C=90°,AB=15,△ABC的周长36,求△ABC的面积.
在Rt△ABC中,∠C=90°,tanA=12分之5,△ABC的周长为18,求△ABC的面积
在Rt△ABC中,∠C=90°,AB=5,ABC的面积等于6,求△ABC的内切圆半径
如图,在△ABC中,∠ABC=∠C,BD平分∠ABC,∠A=36°,求∠CDB的度数.没图.
在△ABC中,a+b=10,∠C=120°,则△ABC周长的最小值
在Rt△ABC中,∠A=90°,∠ABC=2∠C,BD是∠ABC的平分线,求证:CD=2AD
在Rt△ABC中,∠A=90°,∠ABC=2∠C,BD是∠ABC的平分线.求证CD=2AD
△ABC中,∠C=90°,∠A
如图,在Rt△ABC中,∠C=90°,AB=5,S△ABC=6,求△ABC的内切圆半径r
在△abc中 ∠c 90°,且AB:AC=13:12,三角形ABC的周长为120,求三角形ABC各边长及面
下列说法错误的是( ) 详情见问题补充△ABC中,若∠B=∠C-∠A,则△ABC是直角三角形△ABC中,若a²=(b+c)(b-c),则△ABC是直角三角形△ABC中,若∠A:∠B:∠C=3:4:则△ABC是直角三角形△ABC中,
在△ABC中,∠A+∠B=100°,∠C=2∠B,求△ABC三个内角的度数
如图,△ABC中,BD是∠ABC的平分线,∠ABC=∠C=∠BDC,求∠A、∠C、∠ADB的度数
在Rt△ABC中,∠C=90°,∠ABC=30°,BD是△ABC的角平分线在Rt△ABC中,∠C=90°,∠ABC=30°,BD是△ABC的角平分线,求tan15°的值(提示:过点D作DE⊥AB,垂足为点E)