三角形ABC中,AB=BC=2,角B=45°,四边形DEFG是它的内接正方形,求正方形DEFG的面积.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 15:38:23
三角形ABC中,AB=BC=2,角B=45°,四边形DEFG是它的内接正方形,求正方形DEFG的面积.
xSNA~ Cui ޙBB+Řx(&AiL R+&> Wvwi 7p7gw.g{7k亭X@FI14PR{s9 Iz_{jo}wdXd%4 WvGWtq~_JM=Um4QXZ*?y;Q( R%abU.o <- 2N ¤hɊlKrlIfQY@%UIYUI$Id* WmB@|R@Ź¸B.IGetY-(QhJ\]|9 &CiXQ&K1=XnoAo#T1d`4K Q`2jBPhN {3'.!<`Ca+9g(5N2],၍IYuo"ԖI'h휻?iI8t#,)h~ʏ!o0A1u΍.oN~m8rg޼:h7N`#ܳSXsxX8n[ZP{|yFzPڠyXK rWc?(cP h%􎯷[J0cE`~-pPhOV0X<4J2_ cO(JB{Q

三角形ABC中,AB=BC=2,角B=45°,四边形DEFG是它的内接正方形,求正方形DEFG的面积.
三角形ABC中,AB=BC=2,角B=45°,四边形DEFG是它的内接正方形,求正方形DEFG的面积.

三角形ABC中,AB=BC=2,角B=45°,四边形DEFG是它的内接正方形,求正方形DEFG的面积.
GF//BC=>△AGF是等腰三角形=>AG=GF
正方形DEFG=>GF=DG
=>∠BDG为直角=>△BDG为直角三角形
∠B=45°
=>BD=DG,BG=√2BD
∵AB=2
∴BG+AG=2
∴BG+BD=2
∴(√2+1)BD=2
解得BD=2√2-2=DE
∴正方形的面积=DE*DE=12-8√2

AG/AB=FG/BC
而AB=BC
所以AG=FG
而BG=根号2*DG
DG=FG
所以BG=根号2*AG
而AB=2
所以AG+BG=2
AG=2(根号2-1)=DG
而DEFG面积=DG²=12-8根号2

角FDE=45°, 三角形ABC 相似于 三角形FDC ,
FD/AB = CD/CB
FD = CD
FD = 根号二*DG = 根号二*DB(GDB是等腰直角三角形)
CD = 2 - DB
可以算出DB 面积就是DB的平方

假设正方形边长为a,根据角B=45,AB=BC=2,推出GDB为等腰直角三角形,AGF为等腰三角形
则GD=BD=a,BG=a√2,AG=GF=a
AB=BG+AG=a√2+a=2
求出a=2/(1+√2),正方形面积=aXa=4(3-2√2)