一道二次函数的数学题【急】!如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B(3,0)两点.⑴ 求该抛物线的解析式.⑵ 设⑴中的抛物线上有一个动点P,当点P 在该抛物线上滑动到什么位置时,满足S△P

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 03:51:41
一道二次函数的数学题【急】!如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B(3,0)两点.⑴ 求该抛物线的解析式.⑵ 设⑴中的抛物线上有一个动点P,当点P 在该抛物线上滑动到什么位置时,满足S△P
xW_OG*極{{6>!8*ycU)oPbKy0ns0`?$$@l ޝ };$JU5<ݙٙΌLjj=@m:?=k?]!3/F0nkblj;Zm1rP A2|ȾOOGY M12U7(cVv;p(OK81g C"5%_8C%@FZ_UzZ*Zsh׷͓[V#lE|`#lHTAh:ѹ~8Vן9 Ш\R Z=XDkD"c˥Ö^Lå]NFb J5u&1+f卾hg#12[\{)Srv `ǜCV6[޴Y~ \FS# B5Zx5e-]Q/Lqwr6wlO8Z骦V/Fă?ɏ||6M7},IBN`㚹{-~.3%z6\a:_goO2h^ѷ VV9O^1vXb._8f ,)A<_I*Ty9n[yCNhnݠMe9NNH߶+Q`os1#8^&~!:N\~iRGB' q@0N [: TSŷ?1O5Al+RtcT!P`)튽YLW۶CnOZߌ_a* Σij|7m>|AxB,88ddliyssJ~:/'}8EX)#ᭉqh*gmf1FgFƆ゠M^Ye#w&AqV[ymC1Dc7飌Q`?\ƛ1`Gƽ~i1jXq7%q92R DgAq(e{u`>-̣F'q!|+|pr剄AkmN% L&Np,ˣl<&?a^.̅O+UD]NSI"6ԴA'F+̌xP<\+Ud

一道二次函数的数学题【急】!如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B(3,0)两点.⑴ 求该抛物线的解析式.⑵ 设⑴中的抛物线上有一个动点P,当点P 在该抛物线上滑动到什么位置时,满足S△P
一道二次函数的数学题【急】!
如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B(3,0)两点.
⑴ 求该抛物线的解析式.
⑵ 设⑴中的抛物线上有一个动点P,当点P 在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.
⑶ 设⑴中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
是这里面的最后一道题 图在里面
最后一问还要讲解!

一道二次函数的数学题【急】!如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B(3,0)两点.⑴ 求该抛物线的解析式.⑵ 设⑴中的抛物线上有一个动点P,当点P 在该抛物线上滑动到什么位置时,满足S△P
1)因为抛物线y=x^+bx+c与x轴交于A(-1,0)B(3,0)两点,
所以将A、B两点坐标代入抛物线方程,得:
1-b+3=0
9+3b+c=0
解得:b=-2,c=-3
所以,该抛物线的解析式为:y=x^-2x-3
2)要满足S△PAB=8,已知AB=4,而S△PAB=AB*Py/2
所以:AB*Py/2=8
所以 Py=4,即P点纵坐标为4
所以x^-2x-3=4,或者x^-2x-3=-4
当x^-2x-3=4时,x=1+2√2或者x=1-2√2
当x^-2x-3=-4时,x=1
所以,P点坐标为(1+2√2,4)或(1-2√2,4)或(1,-4)
3)
由前面的计算可以得到,C(0,-3),且抛物线的对称轴为x=1
所以,令Q点坐标为Q(1,y)
那么,△QAC的周长=QA+QC+AC=(√y^+4)+[√1+(y+3)^]+√10
可以看出,要使得△QAC的周长最小,即只要保证(√y^+4)+[√1+(y+3)^]最小即可
令f(y)=(√y^+4)+[√1+(y+3)^],在f'(y)=0得到y=-2,此时f(y)有最小值,也即是△QAC的周长有最小值.
此时,Q点坐标为Q(1,-2)

户快说快说

1.由A,B点有y=(x+2)(x-3)
2.(2)设p(x,y)要满足S△PAB=8,已知AB=4,而S△PAB=AB*|y|/2
所以:AB*Py/2=8
则 y=+4&-4
则 x^-2x-3=4,或者x^-2x-3=-4
当x^-2x-3=4时,x=1+2√2或者x=1-2√2
当x^-2x-3=-4时,x=1
...

全部展开

1.由A,B点有y=(x+2)(x-3)
2.(2)设p(x,y)要满足S△PAB=8,已知AB=4,而S△PAB=AB*|y|/2
所以:AB*Py/2=8
则 y=+4&-4
则 x^-2x-3=4,或者x^-2x-3=-4
当x^-2x-3=4时,x=1+2√2或者x=1-2√2
当x^-2x-3=-4时,x=1
所以,P点坐标为(1+2√2,4)或(1-2√2,4)或(1,-4)
3.

收起

(1)结合条件的特点可以设解析式为交点式,即y=(x-x1)(x-x2),因为x1、x2分别是-1,3,所以解析式为y=(x+1)(x-3),化为一般式为y=x^2+2x-3.
(2)设P点坐标为(m,n),因为AB=4,S△ABP=8,所以!n!=4,
可以理解本题就是求抛物线上纵坐标为4或者-4的点,
当y=4时,x=1+2√2或者1-2√2,1+2√...

全部展开

(1)结合条件的特点可以设解析式为交点式,即y=(x-x1)(x-x2),因为x1、x2分别是-1,3,所以解析式为y=(x+1)(x-3),化为一般式为y=x^2+2x-3.
(2)设P点坐标为(m,n),因为AB=4,S△ABP=8,所以!n!=4,
可以理解本题就是求抛物线上纵坐标为4或者-4的点,
当y=4时,x=1+2√2或者1-2√2,1+2√2.
所以满足条件的P点坐标为p1(1+2√2,4),p2(1-2√2,4);
当y=-4时,x=1,所以P3坐标为(1,-4)。
(3)分析如下:三角形的周长等于AC+AQ+CQ,因为AC的长已经确定,所以转化成求AQ+CQ最小值问题,利用轴对称可以解决。
(3)作C关于对称轴x=1的对称点,即点D(2,3)连结AD,交x=1于P,这个位置就是满足条件的P点。
设x=1与x轴交于点M,作DN垂直于x轴于N,
则M(1,0),N(2,0).可以证△AQM相似于△ABN,
所以MQ/BN=AM/AN=2/3,
因为BN=3,所以MQ=2,
因为Q在第四象限,
所以Q点坐标为(1,-2)

收起

1)抛物线y=x^+bx+c与x轴交于A(-1,0)B(3,0)两点,将A、B两点坐标代入抛物线方程,得到:
1-b+3=0
9+3b+c=0
解得:b=-2,c=-3
所以,该抛物线的解析式为:y=x^-2x-3
(2)要满足S△PAB=8,已知AB=4,而S△PAB=AB*Py/2
所以:AB*Py/2=8
===> Py=...

全部展开

1)抛物线y=x^+bx+c与x轴交于A(-1,0)B(3,0)两点,将A、B两点坐标代入抛物线方程,得到:
1-b+3=0
9+3b+c=0
解得:b=-2,c=-3
所以,该抛物线的解析式为:y=x^-2x-3
(2)要满足S△PAB=8,已知AB=4,而S△PAB=AB*Py/2
所以:AB*Py/2=8
===> Py=4,即P点纵坐标为4
===> x^-2x-3=4,或者x^-2x-3=-4
当x^-2x-3=4时,x=1+2√2或者x=1-2√2
当x^-2x-3=-4时,x=1
所以,P点坐标为(1+2√2,4)或(1-2√2,4)或(1,-4)
(3)
由前面的计算可以得到,C(0,-3),且抛物线的对称轴为x=1
所以,令Q点坐标为Q(1,y)
那么,△QAC的周长=QA+QC+AC=(√y^+4)+[√1+(y+3)^]+√10
可以看出,要使得△QAC的周长最小,即只要保证(√y^+4)+[√1+(y+3)^]最小即可
令f(y)=(√y^+4)+[√1+(y+3)^],在f'(y)=0得到y=-2,此时f(y)有最小值,也即是△QAC的周长有最小值。
此时,Q点坐标为Q(1,-2)

收起

一道二次函数的数学题【急】!如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B(3,0)两点.⑴ 求该抛物线的解析式.⑵ 设⑴中的抛物线上有一个动点P,当点P 在该抛物线上滑动到什么位置时,满足S△P 如图,一道函数数学题 一道关于初三二次函数的数学题如图,抛物线y=ax的平方+bx-4a经过A(-1,0),C(0,4)两点,与x轴交于另一点B.1、求抛物线解析式;2、已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的 如图的二次函数数学题,10和11 一道数学题(只要答第三个问)!如图(图我弄不上,不过应该不影响的),二次函数 y=x^2+(2k–1)x+k+1的图象与x轴相交于O(点O是原点)、A两点.(1)求这个二次函数的解析式; (2)在这条抛物线的 一道九年级数学二次函数题,急,如图,在直角坐标系xOy中,抛物线y=2ax2-6ax+6与y轴的公共点为A,点B,C在抛物线上,AB平行X轴,∠AOB=∠COx,OC=2根号51) 求点A,B,C的坐标2) 求抛物线的顶点坐标 一道初三关于二次函数的数学题,不要从网上复制,如图,在平面直角坐标系中,已知抛物线经过点A(-4,0),B(0,-4),C(2,0)三点若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为 一道初中数学题(代数)如图,是二次函数y=mx2-2x+m2-1的图像,则m的值是_.若将抛物线向左平移4个单位,再向上平移2个单位,则此时抛物线的解析式为_. 一道简单的三角函数数学题求解答如图,急 一道数学题,关于函数图像的,如图 问一道数学题 求一函数的反函数如图 求解一道二次函数数学题.有图最好! 一道初三数学题(有二次函数,一次函数,圆)直线y=mx+2与抛物线y=-x 急,一道二次函数题, 关于二次函数的几何题~~急关于二次函数的几何题~~如图,谢谢! 求问二次函数如图的第三题:急, 九年级二次函数!急!如图,把抛物线y=1/2·x²平移得到抛物线m,抛物线m经过点A(-6,0)和原点...如图,把抛物线y=1/2·x²平移得到抛物线m,抛物线m经过点A(-6,0)和原点,它的顶点为P,它的对称 问一道数学题--是关于二次函数的y=x2+bx+c 其中a0 c>0 抛物线与轴是否有交点,有,请写出坐标.