在直角三角形,ABC中,角ABC=90,斜边AC的垂直平分线交BC于点D,交AC于点E,连接BE.若BE是三角形DEC的外接圆的切线,求角C的大小;当AB=1.BC=2时,求三角形DEC的外接圆的半径
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 15:32:43
xSN@Wn-&Ng~!IXT|"1`0@)v/xS1Ƹ6M=;t6wUo9|xT9{D8Gn}Uj~8wYc ly>Ea?vn `u/#~V^\}Bx2ÊJpbt$WBz}Sl&ok|ژqu*]*LGlvu6ugvajR'x bxi~*ߴ0$E'64bDT1O8d`04^c9;J/ ;4g8TQZݒc:uHFš!qhl n^sl?5ɠld6MV@v;0"/8M崒ˮmd l
在直角三角形,ABC中,角ABC=90,斜边AC的垂直平分线交BC于点D,交AC于点E,连接BE.若BE是三角形DEC的外接圆的切线,求角C的大小;当AB=1.BC=2时,求三角形DEC的外接圆的半径
在直角三角形,ABC中,角ABC=90,斜边AC的垂直平分线交BC于点D,交AC于点E,连接BE.若BE是三角形DEC的外接圆的切线,求角C的大小;当AB=1.BC=2时,求三角形DEC的外接圆的半径
在直角三角形,ABC中,角ABC=90,斜边AC的垂直平分线交BC于点D,交AC于点E,连接BE.若BE是三角形DEC的外接圆的切线,求角C的大小;当AB=1.BC=2时,求三角形DEC的外接圆的半径
① 作DC中点F,连结EF,
∴EF=DF=FE
∴F为△DEC的外心
∵BE为△DEC的外接圆切线
∴EF⊥BE,∠BED=∠C
∵DE为AC的垂直平分线
∴BE=EC
设∠C=x=∠FEC=∠EBC,
∴x+x+x+90°=180°(△BEC内角和)
∴x=30°即∠C=30°
② 连结AD,
∵DE为AC的垂直平分线
∴DC为Rt△DEC外接圆的直径,AD=DC
∵AB=1,BC=2,设AD=DC=x,则BD=2-x
勾股定理得:
AB²+BD²=AD²
即1+(2-x)²=x²
∴x=5/4
∴半径=x/2=5/8
在直角三角形ABC中,角BAC=90度,AB
在直角三角形ABC中,角BAC=90度,AB
在直角三角形ABC中,角BAC=90度,AB
在直角三角形ABC中,
在直角三角形ABC中 ,
在直角三角形ABC中
在直角三角形ABC中 ,
在直角三角形abc中,
在直角三角形ABC中,
在直角三角形ABC中
在直角三角形ABC中,
在直角三角形ABC中
在直角三角形ABC中角ACB等于
在直角三角形ABC中,角A
在三棱锥P—ABC中,ABC是直角三角形,角ACB=90度,PA垂直平面ABC,此图性中有( )个直角三角形
在等腰直角三角形ABC中,
在等腰直角三角形ABC中,
已知在直角三角形ABC中,