如图,在三角形ABC中,延长AC边上的中线BE到G,使EG=BE,延长AB边上的中线CD到F,使DF=CD,连接AF;AG.(1)按要求补全图形,并标注字母;(已做出,)(2)AF与AG的大小如何?证明你的结论.(疑问)因为等级关系
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 03:33:06
xN@_e Y;h|}^D@b8U+HlrHsy93*c;NC?3j 2~YWS`@h\RC.Yp)nPK݂Q|i9nem_mmvfښa*ry˽;5WvK,v༏#SޮI->fjV_OPJfއ}j:C
L#9*kCD0̡X|6B1pEDOA+4
[a60 x"lqף
():I^Vr w'2m.SR]F"_צF-B4^)zXb!;Y'O
wZh0i)\Ÿ`FE!o2cJA_?Z
.zɖU'ŏ
K
如图,在三角形ABC中,延长AC边上的中线BE到G,使EG=BE,延长AB边上的中线CD到F,使DF=CD,连接AF;AG.(1)按要求补全图形,并标注字母;(已做出,)(2)AF与AG的大小如何?证明你的结论.(疑问)因为等级关系
如图,在三角形ABC中,延长AC边上的中线BE到G,使EG=BE,延长AB边上的中线CD到F,使DF=CD,连接AF;AG.
(1)按要求补全图形,并标注字母;(已做出,)
(2)AF与AG的大小如何?证明你的结论.(疑问)
因为等级关系,图片传卟上去,
如图,在三角形ABC中,延长AC边上的中线BE到G,使EG=BE,延长AB边上的中线CD到F,使DF=CD,连接AF;AG.(1)按要求补全图形,并标注字母;(已做出,)(2)AF与AG的大小如何?证明你的结论.(疑问)因为等级关系
相等
因为是三角形 ABC 所以
你可以设 三角形ABC为等边三角形 . 所以AB=AC
所以AD=AE 又因为等边三角形
所以 AB边上的中线 CD 等于 AC边上的中线
即 CD=BE 即 CD=BE=EG=FD
然后你就可以得出 三角形ADF与三角形AEG 相同的三角形
继而证明了 AF与AG相等
如图 在三角形abc中 d为ac边上一点 de垂直于ab于点e ed延长后交bc的延长线于点f
如图,在三角形ABC中,D为AC边上一点,DE垂直AB于E,ED延长后交BC的延长线于F,求证
如图,在三角形ABC中,延长AC边上的中线BD到F使DF=BD,延长AB边上的中线CE至G,使EG=CE,求证AF=AG
如图,在三角形ABC中,延长AC边上的中线BD到F使DF=BD,延长AB边上的中线CE至G,使EG=CE,求证:AF=AG谢谢各位初二数学
如图,在三角形ABC中,延长AC边上的中线BE到G,使EG=BE,延长AB边上的中线CD到F,使DF=CD,连接AF;AG1)AF
如图,在三角形ABC中,延长AC边上的中线BD到F使DF=BD,延长AB边上的中线CE至G,使EG=CE,求证G,A,F,三点共线
如图,在等腰三角形abc中 ,角acb等于90度ac等于bc,cd是三角形abc,ab边上的中线,如图,在等腰三角形abc中 ,角acb等于90度ac等于bc,cd是三角形abc,ab边上的中线,点e,f分别在ab,cd的延长线上且ae等于cf,连接e
如图在三角形ABC中,BE,CF分别是AC,AB两边上的高……如图在三角形ABC中,BE,CF分别是AC,AB两边上的高,在BE上 截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.求证:AG=AD.
如图在三角形ABC中,BE,CF分别是AC,AB两边上的高.如图在三角形ABC中,BE,CF分别是AC,AB两边上的高,在BE上 截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.求证:AG=AD.AG⊥AD
如图,在三角形abc中,ab等于ac,e在线段ac上,d在ab的延长线上.
如图,已知在三角形ABC 中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF.如题,百度上搜不到过程
如图在三角形ABC中,BE,CF分别是AC,AB两边上的高,在BE上 截取BD=AC,在CF的延长线上截取CG=AB连接AD.AG.DG
如图,在三角形ABC中,BE,CF分别是AC,AB边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG,证AD⊥AG
如图在三角形ABC中,BE,CF分别是AC,AB两边上的高,在BE上 截取BD=AC,在CF的延长线上截取CG=AB连接AD.AG.DG
如图,在三角形ABC中,BE,CF分别是AC,AB边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.求证如图,在三角形ABC中,BE,CF分别是AC,AB边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.
已知,如图,三角形ABC中,CE、BD分别是AB、AC边上的高线,在BD上取一点P,使BP=AC,在CE的延长线上已知,如图,三角形ABC中,CE、BD分别是AB、AC边上的高线,在BD上取一点P,使BP=AC,在CE的延长线上取一点Q,使
如图 在三角形abc中,AB>AC,AM是BC边上的中线,求证AM>二分之一(AB-AC)
如图,已知在三角形ABC中,AD是BC边上的中线,E是AD上的一点,且BE=AC,延长BE交AC于F,求证AF=EF