若△ABC中,2√2(sin^2A-sin^2C)=(a-b)sinB外接圆半径为√21求角C2求面积最大值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 20:54:36
若△ABC中,2√2(sin^2A-sin^2C)=(a-b)sinB外接圆半径为√21求角C2求面积最大值
xQN@.KLI?LWn4F*(& Oi:Ӻ3`t…qu9s=wR>tĴxϢ(he25 2<#,֩.kvl.(]! ycBg$>d^.~lH.} l bFH_X2Twu*3,)[mP „ɢ`m)u &:"t( pKoo֥ +!hJ'T Š*o={nך/mv҅T= z!j< \"ż+V

若△ABC中,2√2(sin^2A-sin^2C)=(a-b)sinB外接圆半径为√21求角C2求面积最大值
若△ABC中,2√2(sin^2A-sin^2C)=(a-b)sinB外接圆半径为√2
1求角C
2求面积最大值

若△ABC中,2√2(sin^2A-sin^2C)=(a-b)sinB外接圆半径为√21求角C2求面积最大值
由正弦定理a/sinA=b/sinB=c/sinC=2R可将2√2(sin^2A-sin^2C)=(a-b)sinB转化为2√2[(a/2R)^2-(c/2R)^2]=(a-b)b/2R,整理得a^2+b^2-c^2=ab
∴cosC=(a^2+b^2-c^2)/2ab=1/2 ∴∠C为60° ∴∠A+∠B=120°
S=1/2absinC=4sinAsinB(根据正弦定理)
∠A=120°-∠B,代入化简求最值就行了