在rt三角形ABC中∠C=90°AC=4,BC=3两锐角的角平分线交于P求点P到AB的距离

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 21:14:15
在rt三角形ABC中∠C=90°AC=4,BC=3两锐角的角平分线交于P求点P到AB的距离
xSNa}*S)&|&3m]DT:DhV񧊚&Fg~?WP[ ;{wˋ~j:/G:yOGI\tcRFV7|sͼt=eEUN͎ۆ<&?D^S>|ѓ*5AN~G t9.M)ۭ*s S4)Qx<~Buz1OȌsid q{p ̶0W.rڼCDKT!kGDMJI3x6qvːsȧǻJ|br̘?=t~MB"Uy髴:[b_Sc-^0pg(1̝1*F^ꈹEs(#aey EcBZ y"+rk}a [Gk&@HHfgq1pjHͽ4r``W5h¾~bYop &G@=yGl+0w%\Tʮ سF5/o:wf0ٸn>[ ܿUj8NΒ\,;?8^ %}0|n

在rt三角形ABC中∠C=90°AC=4,BC=3两锐角的角平分线交于P求点P到AB的距离
在rt三角形ABC中∠C=90°AC=4,BC=3两锐角的角平分线交于P求点P到AB的距离

在rt三角形ABC中∠C=90°AC=4,BC=3两锐角的角平分线交于P求点P到AB的距离
过点P做PE垂直AC,做PF垂直BC,点P到AB的距离为PD,根据角平分线的定义,设PE=PF=PD=H,四边形CFPE为正方形,所以CF=CE=EP=PF=H,所以FB=3-H,AE=4-H,又根据三角形AEP与三角形ADP全等,所以AD=4-H,同理可得,BF=BD=3-H,又因为AD+BD=5,所以(3-H)+(4-H)=5,所以H=1,所以P到AB的距离为1.

1.5
在P点做3边垂线
设垂线距离为X ,会发现左下是个小正方形,之后全部带到5那条边来做

二楼的方法是对的,但是结果带错了,其中FB=3-H,AE=4-H, (3-H)+(4-H)=5 可得H=1 而且由图可知,斜边AB最长才5,而且P点一定在三角形内。

由勾股定理知AB长为5
过P点做三边垂线,并连接PC
由角平分线与垂线组成的直角三角形两两全等,最终可证明P点到各边的距离都相等
设该距离为X,
则:1/2*(4x+3x+5x)=4*3/2 解这个等式:X=1