向量CA*(向量AB-向量AC)=18.sinA+sinB=2sinC=根号三.求AB的长.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 17:29:34
向量CA*(向量AB-向量AC)=18.sinA+sinB=2sinC=根号三.求AB的长.
xN@_iiRL!Cx+7Hd\ 1%,wN +^; n9ͽJ.WjKW#lPZ4,tSqVaѐ>I=JWϘbBӾ˅ !k=$Ak4djȯZ?!JBW/'D ~cœ#d;o{T2Lj2nDB5`&,lk/[nB!oOJdj$+b>gda =#bD ag !> k\)1>µ)|in +q0'21,,

向量CA*(向量AB-向量AC)=18.sinA+sinB=2sinC=根号三.求AB的长.
向量CA*(向量AB-向量AC)=18.sinA+sinB=2sinC=根号三.求AB的长.

向量CA*(向量AB-向量AC)=18.sinA+sinB=2sinC=根号三.求AB的长.
设三边长a,b,c则CA*(AB-AC)=CA*CB=bacosC=18
sinC=√3/2,cosC=1/2所以ab=36
c²=a²+b²-2abcosC=a²+b²-36即a²+b²=c²+36
sinA+sinB=2sinC,a+b=2c平方得a²+b²+2ab=4c²
c²+36+72=4c²,得c=6,|AB|=6

CA*(AB-AC)=CA*CB=b*a*CosC=18 (1)
SinC=根3/2,因为(1)的关系CosC为正,故C为60度,ab=36 (2)。
(a+b)/(SinA+SinB)=c/SinC (看着正弦定理就明白了),求出a+b=2c (3)。
根据(2)、(3),列个余弦定理方程即可。